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Abstract—In this work, we propose a novel control based
scheme for energy management in wireless sensor networks
with energy harvesting capability. The problem is viewed as
a queue control problem where the objective is to maintain a
reference energy level of the energy storage device. A validated
nonlinear queueing model is considered and a robust nonlinear
controller is considered whose convergence properties are estab-
lished analytically. The proposed control algorithm incorporates
predictions of the energy to be harvested which are generated
using the recently proposed Accurate Solar Irradiance Prediction
Model (ASIM). The combined control and prediction scheme is
evaluated using analysis and simulations. Preliminary simulation
results conducted on the NS-3 simulator demonstrate the ability
of the scheme to achieve its design objective as the energy level
oscillates about values close to the desired level.

Index Terms—Wireless sensor networks, Energy harvesting,
Energy management, Non-linear Control

I. INTRODUCTION

Wireless Sensor Networks (WSNs) constitute a well estab-
lished paradigm of wireless on demand systems, serving a
number of applications such as patient monitoring, weather
forecasting, surveillance, military, wild life monitoring and
agriculture [1]. The fixed battery design approach, adopted at
their early stages of development, poses significant size and
lifetime challenges. Recent developments in energy harvesting
technologies and their integration in WSNs, can significantly
contribute in alleviating these challenges leading to more
effective designs [2].

The harvesting energy capability penetrates in all layers of
network protocol design and a number of harvesting aware
protocols have been proposed in literature [3]. It is well
established that such energy harvesting aware protocols, can
be greatly improved upon availability of energy prediction
strategies, which generate solar irradiance predictions to be
used for better energy provisioning. A number of energy pre-
diction schemes have been proposed in literature [4],[5]. Such
prediction schemes can lead to better energy management of
the available and harvested resources and lead to protocols
with improved properties. A number of energy management
schemes and protocols which take into account the harvested
energy and prediction policy have been proposed in literature
[3], [6], [7], [8]. The problem often takes the form of energy

efficient transmission and in a number of cases this has been
cast in a queueing theory framework. In [9] the problem is
posed as a utility maximization problem subject to energy
constraints, in [10] transmission policies are proposed which
maximize the average long term importance of the reported
data, in [11] activation times are determined so that the number
of interesting events is maximized and finally in [12] the
maximization of the long term averaging sensing under energy
constraints is considered.

In this paper, we represent the rechargeable battery at each
node as queue accommodating energy ”packets”, and unlike
previous work we view the energy management problem as
a queue control problem where the control objective is to
regulate the dissipated energy (by controlling the transmission
rate) such that the battery level converges to a desired level. We
use a validated nonlinear model of the queueing dynamics [13]
and consider a robust nonlinear controller which also takes
into account energy predictions. The stability properties of the
algorithm are established analytically. The performance of the
proposed scheme is also evaluated using NS-3 simulations.
Actual solar irradiance data in Austria, obtained from [14] is
used to generate the predictions and update the battery level.
Energy predictions are obtained using our recently proposed
ASIM scheme [5]. Our results indicate that the proposed
scheme is able to converge to energy level values which
are close to the desired level. The significance of this work
lies on the demonstrated effectiveness of adopting the queue
control based techniques, developed for congestion control,
for energy management in WSNs. This paves the way for
the development of a wide class of such energy management
schemes.

The paper is organized as follows. In section II we formulate
the energy management problem. We present the proposed
control algorithm and establish its convergence properties. In
section III we evaluate its performance using NS-3 simulations
and finally in section IV we offer our conclusions and future
research directions.

II. CONTROL BASED ENERGY MANAGEMENT

We view the energy management problem in WSNs as a
queue control problem. The battery is modeled as a queue
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where energy packets are stored. The amount of energy stored
in the network is denoted by x(t). Unlike traditional WSNs,
in harvesting enabled sensor networks, the battery can receive
energy with a particular rate denoted by Ein. Since energy is
utilized for particular network functions, energy stored in the
battery is lost with a rate which is denoted by Eout. It has been
pointed out in literature that energy arrivals and departures
from the battery can be modeled as Poisson processes with
means Ein and Eout respectively. We thus consider the battery
as an M/M/1 queue. It has also been shown in [13] that,
based on the steady state properties of the queue, the following
nonlinear model can be used to model the queueing dynamics.

ẋ(t) =


max(−Eout(t) x(t)

1+x(t) + Ein(t), 0) x = 0

−Eout(t) x(t)
1+x(t) + Ein(t) 0 < x < xmax

min(−Eout(t) x(t)
1+x(t) + Ein(t), 0), x = xmax

(1)

Fig. 1: Energy Storage in battery as M/M/1 queue

We adopt, this model for our energy management design
and analysis. The rate Eout with which energy is removed
from the battery and is made available for network functions,
is the control variable, as this can be adjusted. Our control
objective is to regulate Eout, so that the energy stored in the
battery has a fixed value xref . Keeping a fixed value xref ,
ensures that the battery is not depleted and that some energy is
always stored for crucial and emergency operations. Another
important attribute is that the rate with which energy enters the
battery Ein(t), can be predicted using the ASIM model. We
denote this prediction as Êin. We incorporate the prediction
in the nonlinear controller proposed in [13] to consider the
following control law:

Eout(t) = max[ρ(t)
1 + x(t)

x(t)
[αx̃+ Êin], 0] (2)

where x̃(t) = x(t) − xref is the queue error, ˙̃x(t) = ẋ(t)
and α is a design parameter and ρ(t) is introduced to provide
robustness against x(t) attaining small values close to zero
and is given by.

ρ(t) =


0 if x(t) ≤ 0.01,
1.01x(t)− 0.01 if 0.01 < x(t) ≤ 1,
1 if x(t) > 1.

(3)

The above equation can be used to update the rate with
which energy is made available for network operations. The
update will be done every time T which is a design parameter.
We assume that the whole amount of energy which is made
available to the wireless sensor node is used to send sensed
data. So, the more energy is made available to the wireless
node, the more data can be sent, and thus more performance

is achieved. The rate of the energy made available to the sensor
node Eout , which is dictated every time step by the control
law (2), thus determines the rate with which sensed data is
sent every time step.

A. Stability Analysis

Theorem 1: The control law described by equation (2)
guarantees that x(t) is bounded and converges close to xref
with time, with an error that depends on the upper bound of
the estimation error ε.
Proof:
Consider the Lyapunov function:

V (x) =
1

2
x̃2 (4)

Differentiating with respect to time, we get

V̇ (x) = x̃ ˙̃x (5)

Our objective is to show that V̇ (x) ≤ 0 outside a specific
neighbourhood of the equilibrium point xref . Equation (1)
dictates 3 different cases to be considered based on the value
of x.

Case 1: (0 < x < xmax)
when (0 < x < xmax) two subcases can be further identified.
Case 1.1: Eout > 0
Substituting Eout(t) from equation (2) in (1) yields:

ẋ(t) = −ρ(t)[αx̃+ Êin] + Ein(t) (6)

Further substituting equation (6) in (5) yields:

V̇ (x) = x̃ ˙̃x = −αx̃2ρ(t)− ρ(t)x̃Êin + Einx̃ (7)

Equation (1) dictates 3 additional subcases which depend
on the value of x.

Case 1.1.1: (x(t) > 1)
when x(t) > 1 then according to equation (3), ρ(t) = 1.
Substituting the latter in equation (7) yields:

V̇ (x) = −αx̃2 − x̃Êin + Einx̃ (8)

Let the estimation error be denoted by λ such that:

(Ein − Êin) = λ (9)

We assume that the error is upper bounded by a constant ε
such that:

|λ| < ε (10)

Substituting equation (9) in equation (8) yields:

V̇ (x) = −αx̃2 + λx̃ (11)

Completing the square

V̇ (x) = −(
√
αx̃− λ

2
√
α
)2 +

λ2

4α
(12)

It follows that for
|x̃| ≥ ε

α
(13)

V̇ (x) ≤ 0 (14)
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The right side of equation (12) is not negative definite because
near the equilibrium point xref i.e for the region |x̃| < λ

α ,
the positive term λ2

4α dominates the negative quadratic
term −(

√
αx̃ − λ

2
√
α
)2. However, V̇ is negative outside

the neighbourhood (|x̃| < λ
α ), for the region |x̃| ≥ λ

α as
shown by equation (14). With ε being the boundary of the
neighbourhood, any solution starting in the neighbourhood
will remain therein for all the future times since V̇ ≤ 0 for the
region |x̃| ≥ λ

α . Hence, solutions are uniformly bounded [15].
Further V (x) is monotonically decreasing until the solution
enters the neighbourhood. Therefore, we can conclude that
the solution is uniformly ultimately bounded [15]. Moreover,
the boundary can be made arbitrarily small by adjusting the
value of the design parameter α.

Case 1.1.2: (x(t) < 0.01)
when x(t) < 0.01, according to the equation (3) the value of
ρ(t) = 0. Substituting ρ(t) = 0 in equation (6):

ẋ(t) = Ein(t) (15)

Substituting the latter in equation (5) yields:

V̇ = Einx̃ (16)

Since x < xref , it follows that x̃ < 0 and since in addition
Ein is always positive it follows that V̇ ≤ 0.

Case 1.1.3: (0.01 ≤ x(t) ≤ 1)
when 0.01 ≤ x(t) ≤ 1 then according to equation (3), ρ(t) =
1.01x(t)− 0.01. Substituting ρ(t) in equation (7) yields:

V̇ = −ρ[αx̃2 + x̃Ein] + Einx̃(t) (17)

Since x < xref it follows that x̃ < 0 which in turn results in
V̇ < 0.

Case 1.2: Eout = 0
According to equation (1).

ẋ(t) = Ein(t) (18)

Two subcases can be further identified.
Case 1.2.1: Ein(t) = 0
Substituting Ein(t) = 0 in equation (18), ˜̇x(t) = 0 and
V̇ (x) = 0.

Case 1.2.2: Ein(t) > 0
Since Ein(t) > 0, It follows that after some time t2 ≥ t1 we

will have x̃(t) ≥ 0 for t > t2 and x̃(t) will be growing with
time t. Increasing x̃(t) implies increasing x(t) which means
that there exists a time t3 close to the t2 i.e t3 ≥ t2 ≥ t1 such
that Eout(t) takes the value:

Eout(t) = ρ
1 + x(t)

x(t)
[αx̃+ Êin] (19)

Since x̃ < 0, and ẋ = ˜̇x(t) = Ein ≥ 0, it follows that
V̇ (x) ≤ 0.

Case 2: (x = 0)
When x = 0, then according to equation (2), Eout = 0 and
substituting the latter in equation (1) yields:

˜̇x(t) = max[Ein(t), 0] (20)

Equation (20) dictates 2 additional subcases.
Case 2.1: Ein(t) = 0
when Ein(t) = 0, then ˜̇x(t) = 0 and V̇ (x) = 0.

Case 2.2: Ein(t) > 0
Since Ein(t) > 0, it follows that after some time t2 ≥ t1 we

will have x̃(t) ≥ 0 for t > t2 and x̃(t) will be growing with
time t. Increasing x̃(t) implies increasing x(t) which means
that there exists a time t3 close to t2 i.e t3 ≥ t2 ≥ t1 such
that Eout(t) takes the value:

Eout(t) = ρ
1 + x(t)

x(t)
[αx̃+ Êin] (21)

Since x̃ < 0,
ẋ = ˜̇x(t) = Ein ≥ 0 (22)

leading to V̇ (x) ≤ 0.
Case 3: (x = xmax)

When x = xmax, considering xmax > 1, according to
equation (3), ρ = 1 Substituting ρ = 1 in equation (7) results
in:

V̇ (x) = −αx̃2 + λx̃ (23)

Completing the square:

V̇ (x) = −(
√
αx̃− λ

2
√
α
)2 +

λ2

4α
(24)

Thus for |x̃| ≥ ε
α , it follows that V̇ (x) ≤ 0.

Therefore, for all the possible cases according to equation
(1) depending on value of x, control law described by equation
(2) guarantees that x(t) is bounded and converges close to xref
with time, with an error that depends on upper bound of the
estimation error.

III. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed approach using simulations conducted on the Network
Simulator (NS-3). We considered a network of 100 harvesting
enabled wireless sensor nodes that were placed in an area of
1500× 1500m2 using a uniform random distribution. 802.11
transceivers were used with the transmission power set to
7.5dbm. The commonly used Friss loss propagation model was
adopted. A randomly selected set of 20 source/sink pairs initi-
ate the communication in the network by transmitting packets
at a rate of 2.048Kb/s each where, each packet is restricted
to a size of 64byte. The packets were relayed between nodes
based on the OLSR (Optimized Link State Routing) protocol.
All measurements were obtained after 100sec which provides
sufficient time for the OLSR algorithm to converge to its
equilibrium state. The harvesting enabled nodes periodically
update the energy harvesting status and decide on the rate
with which data will be transmitted based on the discrete time
version of equation (2). The control period is denoted by T
and is set in the reference scenario equal to T = 30sec. The
harvested energy which is used to update the energy level
in the battery, is derived from real data solar irradiance sets
obtained in Austria [14]. Each dataset contains solar irradiance
for two years (2011 and 2012) having the granularity of one
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Fig. 2: Energy Storage when xref=0.3J

Fig. 3: Throughput when xref=0.3J

value per 30 minutes. The data was also used to generate
energy predictions according to our recently proposed ASIM
scheme [5]. We have run multiple simulation runs to establish
that the energy consumption for packet transmission is of
0.0025J/packet. We assume that the battery capacity is 1J .
The parameter α which affects the convergence properties of
the algorithm was set to 1. Two desired energy levels xref
were considered: 0.3J (120 packets) and 0.5J . We also assume
that each node is persistent in the sense that it always has data
to send.

In Fig. 2, 3 we show the results obtained for the case of 0.3J
reference value. In Fig. 2 we show the battery level recorded
for one of the nodes whereas in Fig. 3 we show the total
throughput achieved. Our results indicate that at time periods
where the energy input is positive the energy management
policy is able to regulate transmission such that the battery
level converges to values which are close to the reference value
which is 0.3J . In addition, during the same periods consistent
high throughput is reported. Moreover, when there is limited
energy input due to low availability of harvested energy, the
battery level drops to the minimum permissible value and the
throughput drops to zero. In Fig. 4, we show the corresponding
plots for the case of the reference value being equal to 0.5J .
Similar behavior is observed.

IV. CONCLUSION AND FUTURE WORK

In this work, we view the energy management problem
as a queue control problem and propose a nonlinear con-
trol strategy which incorporates predictions. The convergence
properties of the algorithm are established analytically and
the effectiveness of the proposed approach is demonstrated
through simulations conducted on the NS-3 simulator. The
reported simulation results are preliminary and the robustness

(a) Energy Level (b) Throughput

Fig. 4: Energy level and Throughput when xref=0.5J

of the scheme with respect to changing parameters such as
the period T and α will be investigated. The significance of
this work lies on the demonstrated effectiveness of adopting
the queue control based techniques, developed for congestion
control, for energy management in WSNs. This paves the
way for the development of a wide class of such energy
management schemes and such solutions will be pursued.
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