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Abstract—The advantages of using of the mobile sinks (MSs)
to perform data collection from Wireless Sensor Networks
(WSNs) are now widely recognized. This is because the MS
data collectors can service isolated systems and reduce energy
expenditures by minimizing the need for multi-hop networking.
However, it remains a challenging problem to support collection
activities efficiently within the relevant class of predictable but
uncontrollable MSs. This paper presents MuTrans, a novel multi-
channel protocol that uses both clustering and network coding
techniques to increase the reliability and reduce the latency of
data collection in predictable and uncontrollable MS systems.
We first show how to model the expected upload latency of
each cluster head. Then, we present a synchronized dynamic
round-robin scheduling policy for uploading data to a mobile
collector that is based on assigning a method for load balancing.
We describe the implementation of our algorithms by using
multiple channels for increased throughput and incorporating
network coding for improved reliability. Our evaluation of data
aggregation in the presence of packet errors shows that MuTrans
can significantly reduce the latency for data collection, thus
providing strong support for mobile data collection.

I. INTRODUCTION

The term Internet of Things (IoTs) is recognized as a
collection of networking technologies for embedded physical
objects that interact and exchange data with other objects.
Wireless Sensor Networks (WSNs) have a major contribution
in exploiting the IoTs. From a broader perspective, WSNs
form an important subclass of a rapidly emerging system class
called Low-power and Lossy Networks (LLNs). LLNs are
embedded systems with limited resources such as processing,
power, and memory [20]. They are lossy because they use
wireless communication that has a high error rate and unpre-
dictable reception.

Due to these constraints, data collection in dense and highly
distributed WSNs that require long multi-hop routing paths to
data sinks can significantly increase management complexity,
expend excessive amounts of power in relaying packets or, in
the case of battery-powered WSNs, degrade network lifetime
[4]. On the other hand, using mobile data gathering can save
sensors battery life and diminish the number of relay-only
nodes that need to be deployed. Mobile data collection is also
suitable to retrieve data from networks deployed in isolated
and hard to reach locations.

Despite the known advantages of mobile data collection
for many types of LLNs, it remains a challenging problem
to effectively support mobile data collection. This is due to
the fact that LLN nodes generally suffer from high bit and
packet error rates. To address this problem, a wide range of
mobile data collection application classes has been broadly
investigated [7].

In this paper, we focus on uncontrollable predictable mobile
applications. This type of MS traverses the network in a
predetermined path with an arrival schedule that is known in
advance, without motion control that can be modified by our
algorithms and protocols. An example of such an application:
a public transportation vehicle (e.g. bus or train) in Smart
Cities [19]. While the vehicle is in service, it collects data
from surrounding nodes and delivers it to the appropriate base
station (BS).

One critical issue in data collection in the presence of
uncontrollable predictable MSs is to reduce the latency of data
collection. This is because the MS is only in the range of
each node for a fixed amount of time, so if some data is not
collected it must wait until the next time the mobile comes
in ranges. Our paper addresses this problem by designing and
evaluating a novel multi-channel LLN protocol that also takes
advantage of network coding for uncontrollable predictable
mobile data collection. We call our protocol MuTrans for
Multi-channel Transport.

By transmitting on different frequencies, multi-channel LLN
networking can both reduce delivery latency and improve
system throughput [14]. Likewise, network coding [5] is
a mathematical technique where nodes combine bits from
multiple packets to increase network’s reliability. It works by
treating bit strings as elements in a Galois field and conducts
finite field operations over different sets of bits. For wireless
networks that have high bit error rates, network coding is
known to significantly improve throughput [13].

We target inexpensive single transceiver nodes that are
capable of selecting multiple transmission channels. Our sink
is a powerful multi-radio mobile data collector. We assume
a clustered system with two types of nodes: head nodes and
member nodes. The head nodes are the nodes that have direct
communication with the mobile sink, while member nodes
are unreachable by the mobile sink but are one hop away
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from head nodes where multi-hop routing is not required. To
our knowledge, this is the first work to explore using multi-
channel data transmission and network coding to support an
uncontrollable predictable mobile data collection in LLNs.

Since the mobile data sink moves in a known in advance
arrival, data collection latency becomes substantial in regards
to the network instability, due to the dynamic changes in the
network environment.

The MuTrans protocol consists of two heuristic techniques:
data load balance and weighted dynamic round robin schedul-
ing. The first heuristic reduces the data overload at the head
nodes, while the second provides a fairness uploading schedule
that dynamically changes to reduce the overall uploading
latency. MuTrans carefully assigns member nodes to the head
nodes in a load balanced way for both saving energy and
reducing the concurrent uploading latency.

Using a campus-based mobile data collection scenario, we
evaluated the performance of MuTrans against several other
approaches. Our results show that MuTrans outperforms these
other methods in terms of packet delivery rates, network
throughput, and the number of trips required by the mobile
collector.

II. BACKGROUND AND RELATED WORKS

Our approach assumes the ability to form one hop clusters in
a controllable predictable mobile data collection environment.
Example work in this area includes Load Balanced Clustering
with Dual Data Uploading (LBC-DDU) [22]. LBC-DDU con-
structs energy-balanced clusters while having a mobile data
collector to aggregate data from cluster heads in a reliable
communication using two antennas. LBC-DDU carefully picks
what so called polling points from a set of candidate polling
points. The polling points are the locations the mobile collector
has to stop by and retrieve the data to send them later to the
base station. LBC-DDU converts any form of routing into a
one-hop path by creating balanced single-hop clusters.

There has also been significant research in both multi-
channel networking [21], [3], [10] and network coding [16],
[13], [17] within the LLN context.

In terms of supporting mobile data collection, one strategy
is to use controlled mobility. Work in this area includes Kansal
et al. [12], who demonstrated that using mobile data collection
can increase network lifetime and utility in the embedded sen-
sor nodes. A second strategy considered multiple mobile sinks
as in Jea et al. [11] who extended [12] by employing multiple
mobile collectors to reduce data latency. They divided a
convex area into sub-areas in which a load balancing algorithm
is implemented to assign each mobile collector (MULE) to
evenly sub-area. Nevertheless, the scalability becomes an issue
because increasing the size of the convex area and increasing
the size of the sensor nodes degrades the performance with
multiple sinks.

Gao et al. [6] designed efficient member assignments to the
sub sinks using a Genetic Algorithm (GA) in order to enhance
the power consumption and the data delivery to the mobile data
collector, which traverses the network in fixed trajectory with

multi-hop communication. Each sub-sink buffers the received
data from member nodes using shortest path routing trees. On
the other hand, Liang et al. [15] suggested an approximation
algorithm for an NP-Hard optimization problem called Capac-
itated Minimum Forest (CMF) in hierarchical heterogeneous
WSN architecture. The mobile sink traverses through planned
trajectory and collects data from the gateways where they then
temporarily aggregate data from sensors through multi-hop
routing.

By considering the changes in mobile sink trajectories,
Smeets et al. [19] implemented a mobile platform called
Trainsense to support mobile WSNs applications. The modeled
train inheres some of its features – such as controllers and
detectors – to the motes for different mobility trajectories.
Nevertheless, none of these related works have considered
fixed route and uncontrollable mobile data collectors with one-
hop routing in unstable environments.

By considering this mobility model, we propose two heuris-
tic methods to reduce the uploading latency by applying the
advantage of network coding and multi-channel coding in LLN
networks [2]. We use the MuCode protocol [1], which allows
head nodes the possibility to overhear packets synchronously
from their member nodes, while also eavesdropping on packets
from other nodes in order to increase the chances of recovering
lost data. Each head node implements network coding to the
eavesdropped packets along with the already stored packets,
and that combination creates encoded packets. Then the head
node stores them in the transmit queue, which consists of
both encoded and plain packets. Finally, each head node
concurrently sends all its data to the sink through different
channels in order to avoid collision with one condition, that
the mobile sink has enough multi-radios to receive packets
simultaneously.

III. SYSTEM ARCHITECTURE

Our application class is supported by general purpose LLNs
that use resource constrained wireless sensor nodes. The
purpose of these nodes is to periodically sense and process data
and then report this data back to a base station or base stations.
In our case, the mobile collector is used to achieve this goal.
The method for reporting this data back to the appropriate base
station is via a mobile data collection node. The overarching
performance objectives in this environment are to reduce the
latency of data collection, to ensure that all available data is
transferred to the mobile node when it is in contact.

As explained in Sections 1 and 2, a significant challenge
in achieving the above objectives is to maximize throughput
while coping with high bit error rates. To meet this challenge,
we use both network coding and multi-channel LLN transmis-
sion policies.

Network coding in a lossy wireless system relies on the
ability of nodes to overhear communications from neigh-
bors. These eavesdropped packets can then be coded with
other packets to improve network reliability by allowing the
same information to be sent to MS via different paths. We
have designed MuTrans to take advantage of eavesdropping
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transmission overhearing. This eavesdropping is performed by
cluster head nodes. The receivers can decode packets intended
for them by performing mathematical operations based upon
information they already have. It is also used to allow re-
ceivers to recover a number of packets even when some of
those packets are lost due to environment instability. From
a mathematical perspective, network coding is performed by
techniques such as Random Linear Network Coding (RLNC)
[9], [8], where packets are defined by elements over a Galois
field. The original packets are recovered by using operations
such as the Gaussian elimination. The Random part of RLNC
means the bits are combined after they are multiplied by a
random coefficient.

In our architecture, we assume that the route of the mobile
collector (MuCar) is known, and the head nodes are deter-
mined using the LBC-DDU algorithm, an algorithm that is
described in Section 2. We now precisely define polling sector
as the range in which the MuCar can communicate with head
nodes and receive data while it is on the move. The polling
sector length at head node Hi can be measured by the distance
between the starting point, where MuCar contacts with Hi, and
the ending point before it disconnects with Hi. The location of
each polling sector is known once the head nodes are selected.

Members transmit their data to the nearby head nodes where
the data is stored. Each member node picks one head node to
send their data to. We are assuming a non-splitting data flow
system, which means that the data from a node has to be sent
to its dedicated neighbored node without dividing the data into
multiple receivers. Once MS initiates a contact with the head
nodes, they send their aggregated data along with their own
data to MS.

LLN nodes possess radios that have single transceivers and
are capable of supporting multi-channel communication proto-
cols [18]. The sink, on the other hand, has multiple radios that
allow it to receive data from head nodes concurrently through
different channels. This multiple radio setup is used to prevent
packet collisions and reduce uploading latency. By enabling
multi-channel networking, head nodes in a neighborhood can
send packets simultaneously without causing collisions, as
long as they use different channels (λi). The gap between
any two frequencies is large enough so that the interference is
eliminated, meaning that channel λi does not interfere with λj ,
where i 6= j. Successful use of multi-channel communication
requires that senders and receivers agree upon which channels
to use at which time, and their agreement requires a channel
scheduling policy. The advantage of this approach is that any
pair of nodes that use different channels will not interfere with
each other, thus avoiding the hidden terminal problem.

Transmitting over multiple channels decreases latency and
increases throughput. In mobile systems, the head nodes must
use different frequencies by a deliberate policy of synchro-
nized channel switching that occurs while uploading data to
the multi-radio mobile sink [2]. The channel switching is
needed when the number of head nodes at the uploading
position are larger than the number of available radios at the
mobile sink.

Fig. 1: MuTrans System Model

Figure 1 illustrates the MuTrans system architecture. The
basic idea is that there are two types of nodes – head nodes
and member nodes. The Figure shows the member node m3

sending its packets to its head node (solid line) H3 , while
another head node H4 overhears the packets (dotted line) and
uses network coding to enhance network reliability.

Recall that the definition of a polling sector is the range
within which the MuCar can communicate with head nodes
and receive data while on the move. The polling sector length
at head node Hi can be measured by the distance between the
starting point where MuCar contacts with Hi and the ending
point before it disconnects with Hi. Notice that the location of
each polling sector is known once the head nodes are selected.
Once the mobile sink (MS) enters the polling sector, the head
nodes transmit their stored data through different assigned
channels λi.

The member node assignment to each head node becomes
critical in this situation. This assignment can increase the data
load at the head node, which increases the energy consumption
while also increasing the uploading latency to the MS. Since
the MS has uncontrollable mobility, the uploading deadline is
firm and unbreakable at each polling sector. Another important
consideration is when the number of concurrent uploading
head nodes exceeds the number of radios available at the MS.
Therefore, fair and balanced scheduling mechanisms have to
be designed to overcome this problem.

IV. SYSTEM MODEL

Based off of the system architecture described in Section
3, we now show how to model the application network. We
describe the latency analysis in the worst-case scenario where
all the packets are successfully received to their designated
head nodes. We first define the inter-session σ as the total time
the MS travels the network while receiving the data from all
of the head nodes and download them to the base station in
a dwell position. Without loss of generality, we consider the
MS to perform periodic data collections, so, for every σ time
unit, the mobile makes a ”round trip.”

Let the distance PSj represent the polling sector j and the
distance the MS travels once it starts communicating with Hi

until it terminates that communication. We define ∆j as the
contact duration time between MS and the head nodes at PSj.
The upload time ωj(∆j) is the time MS needs to upload data
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from a polling point j at contact duration ∆j . We assume the
MS has < radios, and those radios allow it to receive data
simultaneously from most < head nodes.

Let Ψi(σ) represent the data that needs to be uploaded to
the MS from head node Hi at inter-session σ. Ψi(σ) can be
formulated as:

Ψi(σ) = γiσ +

ki∑
z=1

γz,iσ (1)

where γi is the data rate generated by the head node Hi and
γz,i is the data rate generated by a member node mz,i that
is assigned to the head node Hi, while ki is the number of
member nodes assigned to Hi.

By assuming the packet size is fixed, using Equation (1)
, the number of packets that the head node Hi has at inter-
session time σ can be found by the following equation:

Gi(σ) =

⌈
Ψi(σ)

packet size

⌉
(2)

Subsequently, the uploading latency for head node Hi at
inter-session σ is equal to multiplying Gi(σ) by τ , where τ
is the packet transmitting latency time.

Let Γj represent the number of head nodes that the MS
can cover while receiving data at polling sector j. Again,
without a loss of generality, and to simplify the notation, we
assume that if Hi and Hi′ share the same polling sector PSj ,
then they both have the same starting and ending contact time
while uploading their data to the MS. Consequently, if the
number of head nodes are more than the number of radios
available at MS, then all these nodes cannot upload to the MS
simultaneously, because there will be transmitting interference
between some head nodes that use the same channel. There-
fore, we introduce the concept of uploading scheduling where
each number of at most < head nodes are allowed to transmit
concurrently to the MS, while the remaining are scheduled for
next transmissions in the same way as the previous schedule.
The number of different uploading scheduling that the MS
needs at PSj is formulated as:

Πj =

⌈
Γj

<

⌉
(3)

This equation shows that if Γj ≤ <, then only one schedule
is needed to transmit a packet per head node at PSj . The
challenge is to reduce the uploading latency. We observe that
each schedule latency is bounded by the maximum number of
packets a head node has per schedule. Hence, the upload time
ωj(σ) takes to the MS at polling sector j for inter-session time
σ can be formulated as:

ωj(∆j) =

Πj∑
c=1

Gc
∗(σ) . τ ≤ ∆j (4)

where Gc
∗(σ) is the selected maximum number of packets that

a head node has that belong to the schedule c in inter-session σ
at PSj using Equation (2). This uploading latency should not

exceed the contact interval time ∆j or else not all data will be
received during that trip. Unlike traditional transmitting with a
single transceiver at the MS, in our multi-channel scheme the
uploading latency among the head nodes is only considered
by the node that has the maximum total number of transmitted
packet among the head nodes. The reason is that head nodes
transmit concurrently to the MS using different channels that
have been assigned by the MS prior the uploading process.

Assuming that the communication duration between the MS
and all of the head nodes from all of the polling sectors have
the same contact period ∆, the total uploading latency Ω(σ)
at inter-session time σ can be formulated as:

Ω(σ) =

N∑
j=1

ωj(∆j) ≤ N ∆ (5)

where N is the total number of polling sectors on the network.

V. MUTRANS PROTOCOL

The purpose of the MuTrans protocol is twofold: First, to
dynamically assign each member node to a head node. Second,
to, as fairly as possible (in the sense of overall reducing total
upload latency), assign uploading schedules to head nodes. For
each of these problems, we present polynomial time heuristics.
The heuristics are meant to be run with full knowledge of
system parameters, and therefore can be run by the MS. The
protocol can be run continuously as the mobile traverses the
system or can be run whenever system parameters change,
such as head node or member node assignment, changes in
data rates, or changes in mobility patterns as in LBC-DDU.

A. Data Load Balancing

The Data Load Balance (DLB) - Algorithm 1 - heuristically
balances data loads among the head nodes in order to reduce
the uploading duration in the mobile data collector. We define
C(mi) as the set of candidate head nodes that the member
node mi can assign its data to. Those candidates are one-
hop distanced to mi. Initially, each member and head node
calculates its collected data Ψmi

(σ) and ΨHi
(σ) respectively

from Equation (1) during inter-session time σ.
We say that a schedule’s balance is measured by the quantity

|Gx
max −Gx

min|, and that a schedule that is ”balanced” has the
property min |Gx

max −Gx
min|.

In steps 4-5, the set Q is defined as having all of the member
nodes at the current polling sector so that it is sorted based
on the number of candidate head nodes per member nodes in
ascending order and then based on the local data in descending
order. In this way, the least candidates’ member node chooses
first in order to give more precise and better options to the
member nodes that have more candidate head nodes. If we
do the opposite, then a member node with high candidates
may choose a head node, which may be the only option for
another member node – therefore increasing the load to that
head node. This can be avoided if that choice was processed
later.
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Algorithm 1: Data Load Balance (DLB)
1: Initialization: each member node mi defines
C(mi) = {Hi|∀Hi ∈ NB(mi)};

2: Initialization: each member node mi calculates
Ψmi(σ) = γmi .σ;

3: Initialization: each head node Hi calculates
ΨHi

(σ) = γHi
.σ;

4: Q = {mi|∀i ∈ {1, . . . , µj}};
5: Sort mi in Q based on the size of C(mi) in ascending

order, then based on Ψmi(σ) in descending order;
6: while Q is not empty do
7: m← EXTRACT (Q);
8: m chooses head node Hi s.t. Hi ∈ C(m) and ΨHi

(σ)
is the lowest;

9: ΨHi(σ)← ΨHi(σ) + Ψmi(σ);
10: end while
11: Output: each member node is assigned to a head node

with data load balanced;

Fig. 2: An example of the candidate head nodes per member
node. Each number represents the data load.

In steps 6-10, iteratively, we pick the first member node
and choose the head node with lowest data load and update
its data load by including the member node’s data load. This
iteration is processed until the set Q is empty.

Figure 2 represents an example of the DLB algorithm where
the dark circles are the head nodes, while the white circles are
the member nodes. The dotted line shows the candidate head
node that will be assigned by the member node, while the
solid line represents the path of the MS. Each node calculates
its G value during σ duration using the Equation (2). Because
head nodes are not assigned to any member node yet, the head
nodes calculate their G values using only their local data.

In this example, the set Q is equal to
{m1,m7,m3,m4,m6,m5,m2} , which is sorted based
on the member nodes with the least options to choose a head
node and with the highest number of packets. With regarding
this sequence, each member node selects the head node with

Fig. 3: The member assignments after using DLB method.

Algorithm 2: Dynamic Round-Robin Scheduling (DRRS)
1: Input: head node set HSj ;
2: S ← HSj ;
3: while S is not empty do
4: Sort S based on Gi in descending order;
5: Divide S into g =

⌈
|S|
<

⌉
schedules;

6: Select the g head nodes where each has minimum G
per schedule x (Gx

min);
7: In each schedule x, head nodes concurrently transmit

their data Gx
min times;

8: For each head node Hi at schedule x,
Gx

i ← Gx
i −Gx

min;
9: Remove all head nodes with Gi = 0 from set S;

10: end while
11: Output: fairness dynamic schedules that utilize

concurrent heads uploading;

smallest data load. Figure 3 shows the final assignment with
load balanced among the head nodes.

The complexity time for our heuristic algorithm is O(µj

x (Γj + logµj)), where µj is the number of member nodes,
while Γj is the number of head nodes.

B. Utilized Fair Scheduling

A synchronized schedule that is based on the number of
packets in the head nodes has to be maintained to reduce the
uploading latency. Given Γj , and given head nodes that want
to upload their data to the mobile data collector at a given
polling sector PSj , we define Algorithm 2 , which fairly and
dynamically utilizes the scheduling of the concurrent head
nodes that are uploading. Let HSj be the head node set at
the polling sector PSj .
Steps 1-2 takes the HSj set and assigns it to set S. The
iteration of the algorithm considers the remaining non-sent
packets in the set S. At first, the set is sorted based on the
number of packets each head node has in descending order.
Then, it divides these head nodes by the number of available
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channels that the mobile data collector has, which creates g
schedules of head nodes. Each schedule x has a head node
with a minimum number of packets (called Gx

min), which is
the indicator for how many simultaneous transmitting should
be done during this iteration. We use Weighted Round Robin
scheduling, in the sense that G1

min ≥ G2
min ≥ . . . ≥ Gg

min,
which leads to the number of concurrent transmitting per
iteration in schedule 1, which is always greater than or
equal to schedule 2, and so on until schedule g. After the
transmitting process is complete in this iteration, each head
node at schedule x deducts Gx

min from its total packet, then
S removes all the head nodes that have no remaining packets
to send. The algorithm repeats the previous steps until the head
nodes transmit all packets.

Before we define fairness, certain terminology must be
introduced. Let x be a schedule, and let |x| be the number of
concurrent heads uploading at schedule x. A schedule x, which
has the ”maxed concurrent heads uploading” when it satisfies
the property: min |< − |x||.The fairness uploading scheduling
is weighted by the Gmin on each schedule. For each iteration,
the weighted round-robin scheduling is taking place with the
queuing ratio G1

min

Gg
min

:
G2

min

Gg
min

: . . . : 1 where for instance, in the
first iteration, schedule 1 transmits G1

min/G
g
min packets while

schedule g transmits only single packet in round-robin fashion.
This process is repeated until the end of the first iteration.

Figure 4 depicts an example of DRRS scheduling with
two radios available at MS. In the first iteration, the set S
= {H4, H3, H1, H2} where it is sorted based on the largest
number of packets. Then, the set is divided into 2 schedules:
schedule 1 = {H4, H3} with G1

min = 11 while schedule
2 = {H1, H2} with G2

min = 8. Now, in the transmitting
phase, each head node on the same schedule transmits packets
simultaneously using different assigned channels. However,
each schedule has its own time slot that does not overlap with
another schedule. The round robin scheduling is implemented
to emphasize fairness among the schedules, where schedule 1
transmits 11 packets, while schedule 2 transmits eight packets
during the first iteration.

Fig. 4: DRRS example using multi-channel with < = 2.

In the second iteration, the set S will be {H4, H1}, which
produces one schedule with G1

min = 1, where each head node

has only one remaining packet. The total time slots needed
to transmit 40 packets from 4 head nodes is 20, which is
exactly the same as the optimal solution, and that is not always
the case. The running time complexity of DRRS algorithm is
O(Γ2

j log Γj).

VI. EVALUATION AND RESULTS

Using Cooja, an LLN simulation tool, we evaluated
MuTrans against several other approaches. The purpose
of this evaluation was to judge the effectiveness of our
proposed heuristic. Since there do not exist other heuristic
algorithms that are applicable in our predictable multi-channel
environment, we defined two simple heuristics to solve our
two subproblems: Random Member Assignment RMA and
Static Round Robin Scheduling SRRS. RMA is an algorithm
that randomly assigns member nodes to their nearby head
nodes without considering data balancing, whereas SRRS is
a round robin scheduling that fixes the head node location to
its original schedule.

These two baseline heuristics enabled us to define three
new protocols. The first combination is RMA + SRRS,
where the head node selection is randomly assigned by the
member nodes, while the concurrent uploading schedules are
statically assigned to the head nodes with a single iteration.
The second combination is RMA + DRRS, where the head
nodes are selected randomly by the member nodes, while the
concurrent uploading schedules are dynamically assigned to
the head nodes with multiple iterations as in algorithm 2. The
last combination is DLB + SRRS. Here the head nodes
are assigned by the member nodes based on algorithm 1,
which balances the data rate load at the head nodes; however,
the concurrent uploads are statically scheduled to these head
nodes. All of these three new protocols use multi-channel
network coding.

Fig. 5: George Mason University map

To represent a realistic uncontrollable but predictable en-
vironment, we used a topological representation of George
Mason University, as shown in the Figure 5. We used the
Contiki operating system to implement the protocols, where
the red/light drop pins are the polling sectors in which head
nodes upload their data to the MS, while the green/dark drop
pin represent the Base Station in which MS has to dwell at and
send the collected data to. Cooja, the Contiki simulation tool,
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emulates the network nodes and its hardware platform. We
chose the TMote Sky node which transmits 250 kbit/s using
MSP430 microprocessor and CC2420 radio. The platform
works in 10 KB of random access memory and 48 KB of
program flash. The radio medium is configured to the Unit
Disk Graph Medium Distance Loss with 50m transmission
and interference ranges. In our experiments, we assumed that
each node sends a packet of size 50 bytes at time slot t
where the difference between two consecutive time slots is
100 milliseconds per transmission.

The MS is traversing the GMU campus in a fixed route
with a distance of 5.3 km and a speed of 55 km/h. We
installed 16 polling sectors, where the number of head nodes
is 6 per polling sector. The total number of deployed nodes
are 192 with ∆ = 4.6 seconds contact duration between the
MS and the head nodes. Each member node i has its own
data transmitting rate γi in order to test the data balance
algorithm. These member nodes are randomly scattered and
are 1-hopped away from the head nodes. We evaluated our
protocols with a different number of radios < available at
the MS. These experiments are conducted with a variety of
wireless Packet Error Rates (PERs) using the MuCode network
coding protocol [2].

A. Packet Delivery Rate (PDR)

The first experiment is to judge the Packet Delivery Rate.
Figure 6 depicts the average packet delivery rate versus PER
using two radios in MS. In a reliable communication (i.e. PER
= 0%), the PDRs are maximized, and all of the four techniques
are equal. At PER = 10%, however, DLB + DRRS becomes
the only method that maintains full PDR, with a difference up
to 8.7%. Even when PER gets higher, our protocol is superior
to the other techniques by, at least, 40% , 3%, and 11% in
PDR, which can be compared to RMA + SRRS , RMA +
DRRS, and DLB + SRRS.

Fig. 6: Average packet delivery rates with < = 2.

The reason for this result is that DLB increases the chance
to get more overheard encoded packets from neighbors, which
eventually leverages the use of network coding to decode the
lost packets. Furthermore, DRRS increases the total number
of packets to be transmitted, compared to SRRS for the same

contact duration, which raises both the plain and encoded
transmitted packets. It can be noticed that DLB significantly
plays a greater role in packet delivery consistency when
compared to DRRS.

B. Network Throughput

Figure 7 shows the average network throughput with dif-
ferent PERs. The four protocols shown with < = 2 are the
same techniques from the previous results. At PER = 0%, the
throughput in DLB + DRRS outperforms the other method
with < = 2 from 3.7% to 12%. The reason for this superiority
is that DRRS allows more packets to be transmitted; however,
RMA creates unbalanced data loading among the head nodes,
which affects the uploading latency.Meanwhile, DLB effec-
tively uses this lemma in order to reduce the uploading latency,
which eventually increases the network throughput with a fixed
contact time.

Fig. 7: Average network throughput versus PER with different
<.

On the other hand, DLB + DRRS (< = 6) outperforms
the same model when < = 2 and < = 4 in relation to network
throughput in different packet error rates up to 166% and 73%,
while at PER = 40%, the gap is shrunk slightly to 154% and
72%. This throughput’s advantage is because DRRS increases
the concurrent data uploading by increasing the number of
radios available in MS in order to be equal to the number
of head nodes at that polling sector, which increases the total
number of packets efficiently.

C. Trips Required for Data Delivery

One of our motivations is to quantify the number of trips
required to complete data delivery. To assess this, we ignore
the impact of buffer overflow and simply count the number
of required trips. Figure 8 depicts the average number of trips
that MS (< = 2) has to accomplish in order to get the data
needed by the system that has 40% of PER, with different
total data packets originated by all the nodes on the network.

With a small amount of data, even with the high packet
error rate, all of the four protocols can get all of the data
that is originated by the nodes. There are two reasons for this
successful transmission: First, network coding is implemented
in all of them, which helps recover lost data packets. The
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Fig. 8: The average number of trips MS has to take to collects
all the data with PER = 40% and < = 2.

second reason for the completed transmission is that the
contact duration meets the deadline for uploading the needed
data packets without the need for retransmissions.

Once the data packets increase to 900, the MS has to take
another trip in order to get the remaining lost packets that
needed to be retransmitted. Since the contact duration time
is always fixed in such an application, the over amount data
packets, which are not considered by the system administrator,
will miss the deadline. Hence not only are the retransmission
of packets needed in high packet loss rates, but also the MS
has to take more trips in order to receive all of the data packets,
as seen in the previous figure. Nevertheless, DLB + DRRS
outperforms RMA+ SRRS, RMA+DRRS, and DLB +
SRRS by up to 57%, 36%, and 20% in data upload latency
respectively.

VII. CONCLUSION

This paper presented MuTrans, a network-coded multi-
channel protocol for uncontrollable but predictable mobile
data transport. Network coding has been used to significantly
enhance the reliability and throughput for low power and
lossy networks. Multi-channel networking, on the other hand,
can essentially reduce the uploading latency and improve the
network throughput. MuTrans balances the non-reachable node
assignments to the local head nodes. It uses synchronized dy-
namic round robin scheduling for uploading data to the mobile
data collector. We presented two heuristic algorithms Data
Load Balance DLB and Dynamic Round-Robin Scheduling
DRRS and evaluate them against different heuristic tech-
niques. The results indicated that MuTrans outperforms the
other methods in packet delivery rates, throughput, and latency.
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