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Abstract—In this work, we study the optimal configuration of
the physical layer in wireless networks by means of Semi-Markov
Decision Process (SMDP) modeling. In particular, assume the
physical layer is characterized by a set of potential operating
points, with each point corresponding to a rate and reliability
pair; for example, these pairs might be obtained through a
now-standard diversity-vs-multiplexing tradeoff characterization.
Given the current network state (e.g., buffer occupancies), a
Decision Maker (DM) needs to dynamically decide which op-
erating point to use. The SMDP problem formulation allows
us to choose from these pairs an optimal selection, which is
expressed by a decision rule as a function of the number of
awaiting packets in the source’s finite queue, channel state, size
of the packet to be transmitted. We derive a general solution
which covers various model configurations, including packet
size distributions and varying channels. For the specific case of
exponential transmission time, we analytically prove the optimal
policy has a threshold structure. Numerical results validate this
finding, as well as depict muti-threshold policies for time varying
channels such as the Gilber-Elliot channel.

I. INTRODUCTION

Recent advances in coding and modulation have allowed
communication systems to approach the Shannon limit on
a number of communication channels; that is, given the
channel state (e.g. the signal-to-noise ratio of an additive white
Gaussian noise - AWGN - channel), communication near the
highest rate theoretically possible while maintaining low error
probability is achievable. However, in many communication
systems, particularly wireless communication systems, the
channel conditions which a given transmission will experience
are unknown. For example, consider the case of slow multipath
fading without channel state information at the transmitter [1].
Because of the uncertainty in the level of multipath fading, it
is possible that the rate employed at the transmitter cannot be
supported by the channel conditions, hence resulting in packet
loss or “outage”. The outage capacity [1], which gives the
rate for various outage probabilities, captures the tradeoff in
such a situation. If a low rate is employed, it is likely that the
channel conditions will be such that transmission at that rate
can be supported (low outage); if a higher rate is employed,
the probability is higher that the channel conditions will be
such that transmission at that rate cannot be supported (high
outage). Below we will indicate the wide range of physical
layers that can be addressed through such an approach and
how this characterization can be systematically derived. Given
this characterization, a crucial question is at which point to
operate the physical layer given information available about
the current state of the network.

Modern wireless networks are extremely dynamic, with
channel parameters and traffic patterns changing frequently.
Consequently, the key question addressed here is how can a
sender dynamically decide on the best physical layer strategy,
given the channel and traffic parameters available to it, as well
as its own status. For example, consider a sender required to
decide among the aforementioned physical layer strategies: an
approach incurring high packet loss yet a small transmission
time, or one possibly having a lower packet loss but a larger
transmission time. In this paper, we derive a framework for
a Decision Maker (DM) wishing to maximize the system
throughput by choosing the appropriate physical layer setting,
while taking into account as many system parameters as
possible, in this case, delay, packet losses and its current packet
backlog status. The DM faces a choice of achieving increased
success probability provided additional transmission time, and
one would expect that this decision will be made with the
queue status in mind, as a full queue causes new arrivals to
be rejected, incurring potential throughput loss. Thus, our goal
is to rigorously analyze this tension, and identify the optimal
strategy.

The tradeoff between rate and reliability is a fundamental
characteristic of the physical layer, and we are interested
in this formulation largely because it captures much more
than the simple point-to-point single-antenna communication
used for illustration in the first paragraph above. To provide
a systematic method to consider how this characterization
might be derived, consider the the now-standard diversity-
multiplexing tradeoff approach originally applied to point-to-
point multi-antenna systems [2] but now extensively extended
beyond that. In particular, the diversity-multiplexing approach
captures the fundamental tradeoff between rate (multiplexing)
and reliability (diversity) for a number of interesting physical
layer choices, including: (1) point-to-point multiple-input and/or
multiple-output (MIMO) systems [2], where the transmitter can
decide whether to send multiple streams (“multiplex”) from the
multiple antennas or to send a single stream with redundancy
(“diversity”), or a combination of the two; (2) half-duplex relay
channels (e.g. [3]), where the transmitter can decide to use
the relay, or not, and how to allocate time to the transmit and
receive functions of the half-duplex relay. We are particularly
interested in this latter example, and we will adopt terminology
from a classical problem in relaying [4] to help clarify the
competing options in succeeding sections. However, we hasten
to remind the reader that the results apply much more generally
to the diversity-multiplexing protocol for any physical layer.

Our model is also relevant for sources transmitting packets

WONS 2017 1570315052

1



2

of variable sizes. In particular, once the size of the leading
packet in the buffer is known prior to the the transmission,
selecting the point of the discussed tradeoff also selects the
transmission time, which has a crucial impact on the future
buffer occupancy. If the buffer is full and arriving packets are
immediately rejected, the potential throughput associated with
these packets is lost. Clearly, the decision rule and the tradeoff
structure are not straightforward in such cases. Nonetheless,
we consider them in our model.

A. Main contribution

Our main contributions are as follows.
Problem formulation: We formulate the problem of

optimal dynamic PHY configuration for the transmitter with
long-lived packets influx by a SMDP. The model is presented
in generality, capturing finite buffer size, variable packet size,
variable channel state, general transmission time distribution
and a decision space which is associated with possible PHY
configuration.

Value function derivation: We derive the equations for
the value function of the SMDP in several interesting cases.
These equations are obtained in a tractable form, allowing a
solution by simple value iteration.

Threshold policy characterization: When transmission
times are exponentially distributed, we prove there exists an
optimal policy with a threshold structure; that is, the source
should make use of the more reliable option if the number of
pending packets is lower than a given threshold, and transmit
with the higher rate option otherwise. We also show that the
value function in this case is concave and increasing.

Numerical investigation: We explore different scenarios by
simulations. In particular, we validate the threshold policy and
concavity for the exponential case and observe similarity to this
structure in other cases as well. In the case of a variable channel
(e.g., the Gilbert-Elliot channel) we observe a multi-threshold
policy which is described by having a separate threshold for
each channel mode.

While a preliminary paper [5] gave basic numerical results
for a related model, to the best of our knowledge, this work
is the first to analyze this problem for a finite buffer at the
source and generality of all other system parameters.

B. Related work

The pioneering works on the relay channel date back to the
seventies [6], when T. Cover and E. Gamal posed the problem
of determining the capacity region of the full-duplex relay
channel. Since then, there has been progress in determining
the capacity region for the degraded case, as well as for
several MIMO settings [7] or a class of erasure channels [8].
Cooperative strategies and their performance in relay networks
were considered in [9]. Nonetheless, in its full generality the
capacity region of the relay channel is still unkown.

Yeh and Berry [10] considered control policies which account
for queue dynamics in order to optimize both scheduling and
routing. The throughput optimization consists of maximizing
the stability region of a set of networked queues by means
of maximum differential backlog algorithms. Our approach is

Fig. 1. Relay channel logical model

different, as we consider the control of a finite queue, hence
inherently stable.

Recently, Urgaonkar and Neely [11] considered a constrained
resource allocation problem in a relay network under stringent
delay constraints. The reliability versus delay trade-off in
finite buffered networks was addressed in [12] and in wireless
networks in [13]. Our work differs from such previous studies
as we consider a different approach to model the relay channel,
namely semi-Markov decision processes (SMDP), which allows
us to analyze a broader set of settings and channels as opposed
to those considered in [11], [12], [13].

For a basic introduction to SMDPs we refer the reader
to [14]. A number of previous works on SMDPs have focused
on establishing the existence of optimal policies of threshold
type under a variety of settings [15], [16], [17], [18]. To the
best of our knowledge, none of these works have considered
the optimality of threshold policies for SMDP models of the
relay channel.

The general trade-off between PHY rate and reliability
has various important applications apart from the already
mentioned basic relay channel. For example, the trade-off
between multiplexing and diversity was discussed in [19] in the
context of MIMO channels, in [20] in the context of multiple-
access channel with fading, and in [21] in the context of
cognitive radio sensing techniques.

Space diversity can be achieved by transmitting simultane-
ously through two channels, minimizing the effects of fading
in a single slot, while time diversity can be achieved since
fading also varies over time, hence different schemes can be
used at different times. Works such as Berry and Gallager [22]
and Collins and Cruz [23] accounted for time diversity and
delay constraints, while works such as Scaglione, Goeckel
and Laneman [24] accounted for space diversity. The SMDP
framework introduced in this paper accounts for both space
and time diversity.

II. SYSTEM MODEL AND METRICS

We assume the application level at the source (S) produces
packets to be transmitted to the destination (D). The structure
of packets is discussed in sequel. The source attempts to
communicate the packet at the head of the queue, formed
in a finite sized buffer, to the destination by a choice among
the possible operating points of the physical layer. In the
case there is an ongoing transmission of an earlier produced
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packet, the new packets are fed into the queue, space permitting.
The packets arriving at full buffer are rejected and the
retransmission details are taken care of by the application
level. For presentation and analytical simplicity, we assume
a pair of operating points at all decision epochs. While this
choice applies cleanly to the simple half-duplex relay channel
example, the extension to the situation of more than two
possible operating points, as might be appropriate for other
PHY layer architectures, is straightforward. Also note that in
the case of continuous intervals of operating points, the model
can be addressed by known techniques for continuous action
space, e.g., discretization. The tension is clear: a higher rate
choice that uses less resources (time) but at a higher packet loss
probability, or a lower rate choice that exploits more resources
to obtain a lower packet loss probability.

Transmission modes: We assume two possible operating
points, and we use a nomenclature motivated by the application
of the diversity-multiplexing tradeoff to a classic half-duplex
relay channel choice: the more reliable and lower relaying rate
and outage probability from a prototypical early cooperative
diversity protocol, and the less reliable and higher rate
corresponding to the direct choice. In all scenarios mentioned
in this paper, we will always denote the more reliable path
with a lower rate as path “a”, while the less reliable path with
a higher rate will be denoted as path “b”. Denote the rates Ra
and Rb, where Ra < Rb. The corresponding packet losses are
denoted as pa and pb, where pa < pb at all times.

We consider packets of random length, hence, the rates of
the two options yield transmission time probability density
functions gb(t) and ga(t), which are readily calculated from
the packet length distribution, Ra and Rb. Note that in the case
of a half duplex relay model ga(t) refers to the entire path
associated with choice “a”, even if the latter is subdivided into
two separate paths. Therefore, we aim to analyze a simplified
configuration as Figure 1 demonstrates. Note that the upper
illustration particularly fits the relay channel problem, while
the lower one can also refer to the general tension between
two PHY settings associated with two different propagation
paths; the upper path corresponds to the choice of reliability
(diversity) while the lower path corresponds to the choice of
rate (multiplexing).

Variable channel: We assume that a variable channel can
be modeled by a Markov process; that is, the current channel
statistics are independent of the past given the last state
of the channel. These dynamics reflect well-known channel
models (e.g., i.i.d. fading, Gilbert-Elliot model). Consider a
sequence of fading values observed across source packets, each
value corresponding to a channel (or, separately, to each path)
state. We assume that the statistics are known to the DM
and are constant for a period which is significantly longer
than the longest possible packet transmission time. Hence
the DM can obtain the packet losses associated with each
such fading value for each potential PHY configuration. Note
that we allow generality of these probabilities by assuming
they can be different for different transmission modes. Clearly,∑
h′ p

u(h′|h) = 1. Also, for the empty buffer state, we allow
these probabilities to be distinct from those at other buffer states,
hence capturing the time it takes until the first packet arrival

to the queue. While these assumptions are approximations,
they conform to the well-known realistic slow fading model,
or quasi-static channels. Denote the channel state by h, and
the channel transition probability from state h to state h′ by
pu(h′|h), where the superscript u, u ∈ {a, b} denotes the
transmission mode.

Arrival process: We assume that the chunks arrival process
at the source is a Poisson process with intensity λ. The size
of the buffer is known to the DM and is given by B chunks.
The packet is ready to be transmitted once the newly arrived
chunk indicates that it is the last one in the packet. Therefore,
this model captures the following packet sizing options:

1) Each packet can have a size of one or more chunks. After
each transmission, the corresponding number of chunks
is subtracted from the buffer.

2) The packets of all sizes occupy space of exactly one
chunk. (For example, packet descriptors are stored in the
buffer, or the chunks are large enough to fit the maximal
possible packet size.) After each transmission, exactly
one chunk is subtracted from the buffer.

We allow two modes of packet size impact. In the first mode,
the packet size is unknown prior to the transmission, and
the transmission times are merely distributed with gu defined
above. Note that this can model the scenario where application
produces chunks and starts the transmission before the last
chunk of the packet has been produced. In the second mode,
the size can be sampled prior to the transmission. Then, the
size of the packet to be transmitted is a part of the state and has
impact on the decision. Denote the size of the packet in this
case by k. Then, packet size transition probabilities, denoted
by qu(k′|k), stand for the probability of having packet of size
k′ at the head of the line after transmitting packet of size k by
acting u, where u ∈ {a, b}. And, as in the case of the channel
transition probabilities, these probabilities can be different for
the empty buffer state to allow for the possibility of a different
size distribution for the first packet to arrive into the empty
buffer. We assume a finite set of possible packet sizes such that∑
k′ q

u(k′|k) = 1 for each possible action u. Hence, in the first
mode, gu can be merely assumed as deterministic given the
packet sizes, or be independent of packet size and selected from
other system parameters. Note that qu can capture complex
packet arrival patterns. For example, a sequence of big packets
which is likely to be followed by sequence of small patterns
and vice versa can be modeled provided the appropriate values
for qu are selected. We assume that the packet arrival process
and variable channel process are independent.

General performance criterion : We now define the per-
formance criterion, which will suit our SMDP formulation as
defined in the next section. Denote the ending time of m-th
transmission attempt as σm, m ∈ {0, 1, · · · }. We assume that
the rewards are only added up at transmission ending times.
Hence, in the case the transmission at time σm was successful,
the reward worth of rm was positive. Otherwise, rm was equal
to zero. Define average reward over infinite horizon

JA = lim
N→∞

1

N
E

N∑
m=1

rm
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variable description
λ arrival rate
B buffer capacity (maximum number of packets

in the system, including the packet being transmitted)
s SMDP state (buffer state and channel state)

Note: as state transitions occur after departures, the buffer
state after a transition ranges between 0 and B − 1

V (s) value function at state s, V (s) = max{V (r)(s), V (d)(s)}
V (u)(s) cost associated with decision u at state s, u ∈ {a, b}
βu,s discount associated with action u
k number of frames per packet
τu,s mean time to transmit via channel u at state s
µu,s transmission rate of channel u, τu,s = 1/µu,s
pu packet loss probability associated with channel u, u ∈ {a, b}
gπ(t) pdf of transmission time then using policy π
Pu(j|i, t) probability of j − i arrivals after t time units, given a

buffer initially filled with i packets and action u is taken
pu(h′|h) channel transition probabilities, given action u is taken
qu(k′|k) packet size transition probabilities, given action u is taken

TABLE I
SMDP NOTATION.

Thus, our goal is the following:
Find the dynamic physical layer setting selection policy,

which takes as input the current occupancy of the buffer and
information (if any) on the current state of the channel and
the packet size at the source’s queue head, and provide as an
output a decision on which transmission path to employ, such
that JA is maximized.

We formulate the described problem by a Semi Markov
Decision Process (SMDP), as formally defined in the next
section.

III. SMDP-BASED FORMULATION AND SOLUTION

Denote SMDP with average cost functional by tuple
{S,A,P, r}, where the components stand for the state space,
the action space, the transition probabilities and the reward
function. We consider the most general case where the state
s ∈ S is expressed by the triplet (n, h, k) ∈ R3 where n stands
for the number of information chunks in the system, h stands
for the medium (channels) state and k stands for the size of
the packet (measured in number of chunks) which is to be
transmitted in the upcoming transmission. The state transitions
happen after transmission over either possible path (“a” or
“b”) ends, or, in the case there was no ready packet for the
transmission (e.g. the buffer was empty), the chunk which
just has arrived indicates that the only packet awaiting now
in the queue is ready. We assume that a transmission mode
(i.e. transmission decision) with corresponding parameters (e.i.
corresponding transmission rates) to each transmission path is
attributed. Right after the state transition the decision which
sets the transmission mode of the current packet is made, and
its transmission is immediately started.

The probability of having j chunks after transmission interval
of length t is denoted by %(j|i, t) and is governed by a Poisson
distribution with mean λt, e.g. if j < B + 1,i > 0 then
j = i− k+m, where m is the number of arrivals during time
t. The action space is defined by A = {a, b, 0}, standing for
transmission mode ”a”, transmission mode ”b”, and abstaining
from transmission. In the case the buffer was empty or action
0 was selected, no transmission is initiated, while the next
decision will be performed right after the next packet is ready.
Otherwise, the actions are taken right after the accomplished

transmissions. The instantaneous gain at the end of a successful
transmission is given by r = k, in the case the reward is set
according to the packet size, and r = 1 in the case successfully
transmitted packets of all sizes have the same value.

In order to simplify the forthcoming analysis, we use a dis-
counted infinite horizon SMDP defined by tuple {S,A,P, r, γ},
where the first four components are exactly the same as in
the average cost formulation and γ is a discount factor. The
discounted cost is given by the following

Jπ(s0) = E
∞∑
m=0

e−γσmrm = Erπ(s0) + E
∞∑
m=1

e−γσmrm =

= Erπ(s0) + Jπ,1(s0) (1)

The connection between discounted criterion and average
infinite reward criterion is well understood. In particular, under
mild conditions for γ, they possess the similar optimal policy,
which is named the Blackwell optimal policy. See [25] for the
details. Note that the second term of (1) is a result of applying
dynamic programming and it is given by E(σ1,s1)[e

−γσ1V (s1)].
The superscript π stands for the policy and the value function
is given by V (s0) = maxπ J

π(s0), for all s0 ∈ S. We
now expand for all possible transitions. Denote the transition
probability P (s1|s0, π(s0)). Accounting for number of arrivals,
channel transitions and leading packet size transitions, for
s0 = (h, k, i), write

P (s1|s0, π(s0)) = P ((h′, k′, j)|(h, k, i), π(s0)) =

= qπ(s0)(k′|k)pπ(s0)(h′|h)%(j|i, t) (2)

The Bellman equation is given by (1), setting Jπ,1(s0) as
follows

Jπ,1(s0) = (3)

=
∑

s1=(h′,k′,j)

V (s1)

∫ ∞
0

e−γtP (s1|s0, π(s0))gπ(s0)(t)dt

(4)

=
∑
h′

∑
k′

B−k+1∑
j=i−k

V (s1)

∫ ∞
0

e−γtP (s1|s0, π(s0))gπ(s0)(t)dt.

(5)

The first (i.e the outer) summation in (5) is over all possible
next channel states. It is degenerated if the channel is fixed.
The second summation is over all possible packet sizes to be
transmitted at state s1. If packet size is unknown, or all packet
sizes are equal, this sum degenerates. The third summation is
over the number of arrivals to the queue during the first trans-
mission. The integration accounts for the average time the first
transmission interval takes. Hence, the transmission time pdf
gπ(s0) may depend on the action taken in state s0. The expected
reward at state s0 is added up at the end of the transmission and
is calculated by Erπ(s0) =

∫
rπ(s0)e−γtgπ(s0)(t)dt. Note that

r0 = 0, while ra = k(1− pa), rb = k(1− pb). Also note that
in the case i < k, (i.e. the first and the only packet in the buffer
is still waiting for remaining chunks to arrive) the gπ(s0)(t)
is given by distribution time of remaining k − i packets to
arrive and the reward is zero. Observe that each product of
probabilities of the form qπ(s0)(k′|k)pπ(s0)(h′|h)%(j|i, t) is a
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weight of the corresponding value function at the next state s1.
The optimal value function is retrieved by the maximization
over all admissible policies V (s0) = maxπ J

π(s0).
We bring next three examples, for which the corresponding

Bellman equations can be written in the tractable form and
the value functions can be explicitly calculated, e.g. by
value iteration [14]. Note that for all examples the boundary
conditions at buffer limits are separately written.

A. Exponential transmission times

Next, we consider exponentially distributed transmission
times. Let 1/µu be the expected transmission time through
channel u, u ∈ {a, b}, as estimated by the controller.

The state space is one-dimensional. The system state is
characterized by the number of packets at the source, and is
denoted by s, s ∈ {0, 1, . . . , B − 1}. We assume all packets
are equally valued with associated reward 1. Letting gu(t) =
µue
−µut in (4), where superscript u stands for the action taken,

u ∈ {a, b}, yields

Ju,1(j) = V (B − 1)

∫ ∞
0

e−γτu%(B|j, t)µue−µuτudτu+

+

B−1∑
i=j−1

V (i)

(∫ ∞
0

e−γτu
e−λτu(λτu)i−j+1

(i− j + 1)!
µue
−µuτudτu

)

where %(B|j, t) =
(

1−
∑B−1
i=j−1

e−λτu (λτu)
i−j+1

(i−j+1)!

)
. %(B|j, t)

denotes the probability that, during a service, at least one
packet is lost due to buffer overflow given that there are j
packets in the system prior to the beginning of the service.
Note that

∫∞
0
tne−stdt = n!

sn+1 . Thus, for 0 < j ≤ B − 1 we
have,

Ju(j) = C(1− pu)
µu

µu + γ
+

B−1∑
i=j−1

V (i)
λi−j+1µu

(γ + µu + λ)i−j+2
+

+ V (B − 1)

 µu
γ + µu

−
B−1∑
i=j−1

λi−j+1µu
(γ + µu + λ)i−j+2

 (6)

The optimal value function is given by V (n) = maxu J
u(n),

n = 1, . . . , B−1. Note that the value function at the boundary
condition n = B − 1 is obtained directly from the equations
above, whereas V (0) is given by

V (0) =
λ

λ+ γ
V (1). (7)

Note that due to the summation in (6) the value function of
the SMDP at each state may depend on all other states. For
this reason, a direct analysis of the SMDP is cumbersome. To
circumvent this challenge, we rely on an MDP formulation
equivalent to the SMDP presented above. The resulting Bellman
equations are simple, hence analysis and identification of
optimal policies of threshold type is plausible.

1) MDP formulation for the exponential case: Next, we
define the states of the MDP and their corresponding value
functions. The transition diagram of the MDP is illustrated in
Figure 2. The definition of the state space is inspired by the
MDP admission control example presented in [14, chpt. 11].

Our goal is to leverage the Markovian structure of the
problem when the times between all events are exponen-
tially distributed. To this aim, we modify the state space to
{0, 1, . . . , B− 1}∪ {0, 1, . . . , B− 1}×{a, b}. Whereas under
the general SMDP framework transitions occurred after every
departure, we now consider transitions that occur after every
departure or arrival. States (n), n = 0, . . . , B−1, are achieved
after a departure (service completion), whereas states (n, u),
n = 0, . . . , B − 1, u ∈ {a, b} are achieved after arrivals.

The system transitions to state (n) after a service completion
that leaves behind n packets in the buffer. As soon as the system
reaches state (n), n = 1, . . . , B − 1, the controller decides
between transmitting the head-of-line packet through channels
a or b. The mean residence time at state (n), n = 1, . . . , B−1
is 1/(µa + λ) or 1/(µb + λ), if actions a or b are chosen,
respectively. If a new packet arrives and encounters an idle
system, the system transitions from state (0) either to state
(0, a) or (0, b), depending on whether action a or b is chosen.
The mean residence time at state (0) is 1/λ.

Next, we consider a new packet that arrives to encounter
a busy system. We assume that the arrival finds a total of
n packets in the buffer (accounting for the packet being
transmitted), and a packet being transmitted through channel u,
u ∈ {a, b}. Immediately after the arrival the system transitions
to state (n, u). At state (n, u) the controller does not take any
actions, as the only possibility is to continue the ongoing
transmission. The mean residence time at state (n, u) is
1/(µu + λ).

Let P(s1|s0, u0) be the transition probability from state s0
to state s1, given that action u0 is taken. Then, the system
dynamics is captured by P(s1|s0, u0) as follows.
P(s1|s0, u0) =

=



1, s0 = (0), s1 = (0, u0)

λ

λ+ µu
, s0 = (n), s1 = (n, u0), u = u0 or

s0 = (n− 1, u), s1 = (n, u)
µu

λ+ µu
, s0 = (n), s1 = (n− 1), u = u0 or

s0 = (n, u), s1 = (n)

0, otherwise

(8a)

(8b)

(8c)

(8d)

(8e)
(8f)

where n = 1, . . . , B − 1. Note that (8) depends on u0
only through transitions (8a), (8b) and (8d). At states (n, u),
transitions (8c) and (8e) are independent of u0, which means
that the controller does not need to take any actions at those
states. Note that the at states (n, a) and (n, b) the variable n
does not account for the arriving packet, which will be admitted
to the system in case the buffer is not full.

Instantaneous rewards are accumulated once transmissions
are finished. Equivalently, such rewards are added at the
beginning of a transmission, multiplied by the corresponding
expected discount. In what follows, we let ca and cb be the
expected instantaneous reward received when actions a and b
are taken, respectively.

2) MDP Bellman equations for the exponential case: Next,
we introduce the value functions and Bellman equations which
characterize the solution of the MDP model. Recall that state
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Fig. 2. MDP model of a system with buffer capacity B. Expected instantaneous reward ca (resp., cb) is received when action a (resp., b) is taken.

(n) is achieved right after a departure (transmission completion)
which leaves n packets at the buffer, n ∈ {0, 1, 2, . . . , B − 1}.
The corresponding value function is denoted by Vn. Recall also
that state (n, u) is achieved right after an arrival to a system
with n packets, n ∈ {0, 1, 2, . . . , B − 1}, including the one
which is currently being transmitted on path u, u ∈ {a, b}. If
n = 0, the transmission of the arriving packet is immediately
started through u. The value function corresponding to state
(n, u) is denoted by V u,An (“A” stands for “arrival”).

We are mainly interested in the values of states (n), i.e.,
our main goal is to obtain Vn, n ∈ {0, 1, 2, . . . , B − 1}, both
because the decisions are made only in these states and because
they are comparable with the SMDP values.

Let δa = (µa + λ + γ)−1, δb = (µb + λ + γ)−1, βb =
(µb+γ)−1,βa = (µa+γ)−1and δ̄ = (γ+λ)−1. We write next
Bellman equations for the value function for states at arrival
events. These equations define the corresponding operators Aa
and Ab, which act in the space of function from {0, · · · , B}
to R.

V b,An = µbδbVn + λδbV
b,A
n+1 = AdV b,An (9)

V a,An = µaδaVn + λδaV
a,A
n+1 = ArV a,An ,

Denote by T,Ta,Tb the operators acting on the space of
functions from {0, · · · , B} to R. When applied to state n,
these operators yield the following equations:

V b,Dn = TbVn = µbδbVn−1 + λδbV
b,A
n + (1− pb)βb

V a,Dn = TaVn = µaδaVn−1 + λδaV
a,A
n + (1− pa)βa (10)

The maximization is performed by Vn = max(V b,Dn , V a,Dn ) =
TVn = max(TbVn,TaVn). At the buffer limit boundary B we
have

V b,AB = µbδbVB−1 + λδbV
b,A
B

V a,AB = µaδaVB−1 + λδaV
a,A
B , (11)

and at the empty buffer,

V b,D0 = V a,D0 = max(λδ̄V b,A0 , λδ̄V a,A0 ). (12)

Arrivals that find an empty buffer are subject to the effect of
the controllers’ currrent decision,

V b,A0 = V a,A0 =

max(µbδbV
b,D
0 + λδbV

b,A
1 + cb, µaδaV

a,D
0 + λδaV

a,A
1 + ca)

Note that V b,A0 = V a,A0 holds because at state (0) no packet
is currently being transmitted. The derivation of the equations

variable description
cu expected instantaneous reward associated to decision u.
(n, u) state right after arrival, when current active transmission

is through u and n packets are found by the arrival.
(n) state following a transmission completion, when n packets

are left in the buffer. A decisions is made at this state.
V u,An value function at state (n, u).
Vn value function at state (n), Vn = max{V a,Dn , V b,Dn }.
V u,Dn state-action value function for action u at state (n).
Au operator applied over arrivals (acts on V u,A).
Tu operator applied over departures (acts on V u,D).
T operator that maximizes the outcome of Tu over u.

TABLE II
MDP NOTATION (u ∈ {a, b}, n ∈ {0, . . . , B − 1}).

above are presented in the on-line version of this paper [26].
See that each operator application updates one state by using
values of two other states. This can be followed from the
arrows in the diagram of Figure 2.

In Section IV we will use the MDP formulation to identify
the threshold type structure of the optimal policy.

B. Deterministic transmission times and known packet sizes

Consider a source which samples the packet size before
the transmission. Consider two possible sizes, denoted by
k1 and k2, both taking in the buffer exactly one slot, i.e.
case 2) in section II. We also assume equal rewards for both
sizes. Then, the state is given by s = {n, k}, n ∈ {0, · · · , B}
and k ∈ {k1, k2}. We assume that packet size dynamics is
given by a discrete Markov Chain with transition probabilities
q(k′|k). For simplicity we also assume A = {a, b}, that is, the
packet, if ready, has to be transmitted. Denote the deterministic
transmission time of packet of size k as τπ(n,k). The packet loss
probabilities are pa and pb. Denote s0 = (i, k), s1 = (j, k′).
Then,

Jπ,1(i, k) =
∑
k′

B∑
j=i−1

e−γτ
π(s0)

Q((s1)|s0, π(s0))V (j, k′)

(13)
where Q((s1)|s0, π(s0)) = qπ(s0)(k′, k)%(j|i, τπ(s0)), and
Erπ(i,k) = (1− pπ(i,k))e−γτ

π(n,k)

. Hence, the value functions
are V (i, km) = maxπ{Jπ(i,km)}, m ∈ {1, 2}. The boundary
condition, then the buffer is empty

V (0, k) = Ee−γtλV (1, k) =
∑
k′

λ

γ + λ

(
q0(k′|k, 0)V (1, k)

)
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C. Gilbert-Elliot relay channel with uniform transmission times

Assume the packet sizes cannot be sampled, but are known
to have a uniform distribution over all channels. Consider two
states of the entire medium, denoted by A and B. Namely,
both relay and direct routes are fully dependent and can
simultaneously be in one of the states. That is, the channel
state refers to the entire medium. The channel state is sampled
prior to each upcoming transmission, and is modeled as part of
the state space, which determines the packet losses in current
transmission slot. Namely, s = {n, h}, n ∈ {0, · · · , B} and
h ∈ {A,B}. Denote u = π(n, h). We assume that channel
dynamics can be expressed by discrete Markov Chain, which
corresponds to the Gilbert–Elliott (GE) channel. The packet
transmission time τa,h (resp. τ b,h) over relay (resp. direct)
channel is uniformly distributed. The uniform distributions
intervals, which depend on the channel state and the action,
are given by [αu,h, βu,h]. For simplicity, we assume that in the
buffer all packets occupy exactly one slot and are equally
rewarded. We assume that channel transition probabilities,
denoted by pu(h′|h), depend on the action u ∈ {r, d}, where
relay (resp. direct) transmission corresponds to the transmission
mode ”a” (resp. ”b”). Denote s0 = (i, h), s1 = (j, h). Then,

Ju,1(i, h) =
B∑

j=i−1

∑
h′

V (j, h′)

∫ βu,h

αu,h

e−γtQ(s1|s0, π(s0))dt

(14)
where Q(s1|s0, π(s0)) = 1

βu,h−αu,h %(j|i, t)pu(h′|h),

and Eru = (1 − pu)
∫ βu,h
αu,h

e−γt 1
βu,h−αu,h dt =

(1 − pu) e
−γ(βu,h−αu,h)

βu,h−αu,h . Note that the probability to
have full buffer after end of transmission is given by
%(B|i, t) = (1−

∑B−1
i=j−1 %(j|i, t)). Finally, the value function

for state s is given V (s) = maxu{Ju(s)}.

IV. STRUCTURE OF OPTIMAL POLICIES

The structure of the optimal policy has particular importance,
for several reasons. First, in order to assess the resources
needed for the policy implementation at wireless nodes. Next,
structural properties can be exploited by learning algorithms
in order to significantly reduce the complexity of optimal
policy search. This is especially useful for the system with
large state-space. For example, once the policy is proven to
possess a threshold structure in one of the dimensions of a state
space, the data to hold for the policy consists of only single
scalar. Moreover, the configuration of similar systems can be
analytically or heuristically based on the existing one, e.g. by
means of reinforcement learning aimed to policy improvement.
We aim to identify threshold policies for the SMDP models
and solutions presented above. For the exponential case, we
analytically prove the threshold property. We finally compare
by simulations the thresholds associated with other service
time distributions. To this end, we state our main analytical
result:

Theorem 1. The problem with exponentially distributed trans-
mission times modeled by MDP is solved by the optimal policy
of a threshold type. Namely, there exists a unique threshold
t, 0 ≤ t ≤ B, such that the optimal policy is to transmit via

path ”a” for all states where n ≤ t and to transmit via path
”b” otherwise.

By the equivalence of the value functions at departures in
MDP and SMDP formulations trivially the following holds.

Corollary 1. The exponential relay problem modeled in
section III by SMDP is solved by the optimal policy of threshold
type.

To this end, let S be a set where each of its ele-
ments is a five-tuple of B-dimensional vectors denoted by
{U,U b,A, Ua,A, U b,D, Ua,D} satisfying the following proper-
ties

1) the difference Ua,Dn − U b,Dn is non-decreasing in n, n ∈
{0, · · · , B}

2) {Ur,d, Ud,d, U b,A, Ua,A} are concave in n ∈ {1, · · · , B},
3) {U,U b,A, Ua,A} are non-decreasing in n ∈ {0, · · · , B},
4) {U,U b,A, Ua,A} have their slope bounded by some posi-

tive constant K, that is, Un −Un−1 < K, Ua,An −Ua,An−1 < K

and U b,An − U b,An−1 < K and, For the proof of the theorem we
will need the following lemma.

Lemma 1. The operators Ab,Aa,T preserve properties 1)-4).

Due to the lack of space, the proof of the lemma appears in
the online version of the paper [26].
Proof of Theorem 1. The proof is based on a well known result
that operators associated with Bellman equation are contract-
ing [14], that is, using the maximum metric ‖ U ‖= maxx |U(x)|
it holds a ‖ U − W ‖<‖ TU − TW ‖ for some 0 < a < 1.
Hence, the operators defined above are contraction mappings,
equipped with the metric ρ(U ;W ) = ||U −W || in a complete
metric space. Since S is a complete metric space and the
operators are strict contractions, they have corresponding fixed
points (e.g. in [27, Theorem V.18]). Now since S is not
empty (one can easily construct such functions; the technical
details are omitted), the functions which are in S and have
the operators Aa,Ab,T applied on them, by lemma 1 stay
in S. By contraction, the repetitious application brings the
result infinitesimally close to the fixed points of Aa,Ab,T.
Recall that the value functions Vn, V b,An , V a,An are the unique
solution of all functions, including those that in S , acting from
n ∈ {0, · · · , B} to R, to the same equations; (trivially, the mild
conditions for uniqueness and existence, see e.g. [14, Chapter
6.2], apply). As a result, {V, V b,A, V a,A, V b,D, V a,D} coincide
with these fixed points and they are in S. In particular, V b,D

and V a,D possess property 4), which is equivalent of having at
most one policy switch state. This proves the proposition.

V. NUMERICAL RESULTS

In this section, we report numerical results on the shape of
the value functions obtained through value iteration. Our goals
are to 1) illustrate how different system parameters impact
the performance of threshold policies and 2) to numerically
investigate the optimality of multi-threshold optimal policies
for the Gilbert-Elliot channel.

In Figure 3 we compare the value functions and threshold
policies for channels associated to exponential, deterministic
and uniform transmission times. The mean transmission rates
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were set to µa = 9 and µb = 12, under the low and high
loads, respectively. The support of the uniformly distributed
transmission times was set to αu = 0.2 1

µu
, βu = 1.8 1

µu
. We

considered both a low load (λ = µa = 9) and a high load
(λ = µb = 12) regime. Vertical lines show the thresholds
where the policy determines a switch from a to b. Observe
that under high load the thresholds are significantly smaller
than under low load. This is because under low loads it is key
to avoid buffer underflows, which cause a reduction in system
throughput.

For the high load, note at the states close to B the value
function becomes nearly constant. This is explained by the fact
that at all these states the average time until the buffer empties
is large. Hence, at these states the penalty due to a potential
non-realized future discounted reward is negligible.

Also note that the numerical results validate our formal
results on the concavity of the value function for the exponential
case. In addition, the value function for the two other cases
are also concave, a result which is interesting on its own.
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Fig. 3. Value functions (V ) at different buffer states (Q). Average transmission
rates and packet losses are given by µa = 9, pa = 0.25 and µb = 12, pb =
0.42. Right: high load (λ = 13), left: low load (λ = 9).

Figure 4 illustrates the multi-threshold policies obtained
when solvig the SMPD model under deterministic and uniform
transmission times with Gilbert-Elliot channels. The two
channel types are denoted as A and B. Each transmission
time distribution corresponds to two value functions, for
channels A and B. Hence, each value function implies its
own threshold. Observe that the value functions for A and
B are very close to each other. Nonetheless, the thresholds
can be easily distinguished. Under the Gilbert-Elliot channel
model, for all the scneraios considered we were always able
to find a separate threshold for each channel type. While a
rigorous analysis of the multi-threshold policy is subject for
future work, the numerical analysis presented here can be
used to devise heuristics to be concurrently applied with value
iteration, aiming towards faster convergence.

VI. CONCLUSION

We have proposed an SMDP model for optimal PHY con-
figuration, derived equations for the value function for several
interesting cases, and formally shown structural properties of
the optimal policy when transmission times are exponentially
distributed. In particular, we have shown the existence of
optimal policies of threshold type. The numerical solution of
the proposed model indicates the good performance of multi-
threshold policies for Gilbert-Elliot channels. Showing the
optimality of the latter under general settings is an interesting
open problem.
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Fig. 4. Value functions (V ) at different buffer states (Q): µa = 10, pa,A =
0.2, pa,B = 0.35 and µb = 15, pb,A = 0.3, pb,B = 0.4. High load (λ = 15)
and low load (λ = 10), with threshold values inside the legend.
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