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Abstract—In this paper we consider the classical prob-
lem of downlink (DL) multiuser (MU) multi-input-multi-output
(MIMO) scheduling with linear transmit precoding. This problem
was formulated over a decade ago and has been deeply studied
since then. Moreover, MU-MIMO with linear transmit precoding
is being increasingly pursued as a key technology by the indus-
try, with a strong emphasis on efficient scheduling algorithms.
However, the intractable combinatorial nature of the problem
has mostly restricted algorithm design to the realm of simple
greedy heuristics. Such algorithms do not exploit any underlying
structure in the problem. Recently, it has been formally shown
that in general this problem is even hard to approximate. Our
significant contribution in this work is to consider the practically
most important choices of linear precoding and power allocation,
and show that the resulting problems can be cast as ones where a
difference of two submodular set functions has to be maximized.
This opens up a new framework for MU-MIMO scheduler design.
We use this framework to design an algorithm and demonstrate
that significant gains can be achieved at a reasonable complexity.
Our framework can also incorporate analog receive beamforming
which is deemed to be essential in mmWave MIMO systems.

I. INTRODUCTION

The huge promise of MU-MIMO was revealed in the
seminal work of [1] which derived the theoretical limits
for a broadcast channel under ideal conditions. This led to
investigations that have continued for the past decade. Notable
works in these investigations have considered more practical
yet asymptotically optimal linear transmit precoding [2], [3]
and have also considered the impact of imperfect (quantized)
channel state information (CSI) [4]. In industry, the effort
to standardize MU-MIMO in 3GPP LTE was initiated right
at the onset of Rel. 8 and has continued since then. It has
so far resulted in the adoption of precoded pilots, which
obviate the need for restricting transmit precoders to a finite
codebook, thereby enabling the full optimization of linear
transmit precoding schemes. However, the performance results
of MU-MIMO in FDD systems equipped with a modest
number of transmit antennas (typically 2 or 4) have so far
been underwhelming. This is because the available coarse CSI
and the small number of cross-polarized transmit antennas are
not conducive to creating beams that enable good separation
of different users in the signal space. The advent of massive
MIMO has once again energized MU-MIMO. Indeed, simulta-
neous transmission to several different users is the main benefit
promised by massive MIMO which is a key 5G technology [5].
The emphasis now is on realizing low complexity scheduling
algorithms.

In this paper, we consider the classical DL MU-MIMO

scheduling problem, which must be solved by the base station
in each cell of an LTE-A network, every sub-frame. We
focus on the narrowband (frequency non-selective) model and
note that our obtained results can be directly applied to a
wideband model by using the approach in [6]. The problem
at hand involves selecting users on each narrowband resource
block (RB), where a selected user can be assigned more than
one stream (a.k.a. a transmit rank greater than 1). Note that
allowing multiple streams per user is important especially in
practical massive MIMO scenarios where the number of active
users is not large compared to the number of transmit antennas
at the base station (BS). The narrowband user selection prob-
lem has been studied mainly for the case when each user has
one antenna and hence can be assigned one stream [2], [3].
Due to the intractability of this problem, several heuristics have
been proposed (cf. [7]). A combinatorial optimization view
has been adopted in [8], [9]. More recently in an important
work [10] it was shown that this problem in general is even
hard to approximate. To the best of our knowledge no prior
work has discovered any underlying exploitable structure in
the problem without making further simplifying assumptions.
Our contributions in this paper are as follows:

• We propose a new framework for designing MU-MIMO
scheduling algorithms. In particular, we show that the
scheduling problem can be cast as one where a difference
of submodular (DS) set functions has to be maximized.
This framework, a.k.a. DS framework, was proposed to
solve machine learning problems in [11] and can be
viewed as the discrete analogue of maximizing the differ-
ence of concave functions, where we note that the latter
continuous optimization technique has been successfully
used to optimize transmit precoder matrices [12].

• We establish that our framework can incorporate the
practically most important choices of linear transmit pre-
coding methods as well as power allocations. We then use
our framework to design an algorithm and demonstrate
that significant gains can be achieved at a reasonable
complexity.

• Our framework can also incorporate analog receive beam-
forming which is deemed to be essential in mmWave
MIMO systems, where we note that mmWave MIMO
systems are another key 5G technology [13].

In the following sections we present our main theoretical
results with full proofs and a few representative simulation
results. Due to space constraints some auxiliary proofs and
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additional description and simulation results are deferred to a
longer version [14].

Notation: we will use boldface uppercase (lowercase) alpha-
bets to denote matrices (vectors). Further, |.| is used to denote
the determinant of its matrix argument as well as cardinality
of its input set. (.)† is used to denote the conjugate transpose
of its matrix argument while ‖.‖ denotes the Frobenius (`2)
norm of its matrix (vector) argument.

II. SYSTEM MODEL

We consider the classical DL MU-MIMO system with Mt

transmit antennas at the base station (BS) and Mr receive
antennas at each user. We assume K active users in the cell
of interest and focus on data transmission on a resource block
in each scheduling interval. Without loss of generality, in the
following analysis we assume each resource block to be of
unit size, on which each user sees a frequency non-selective
channel. Then, the signal received by user k is modeled as

yk = H̆kx + ηk, k = 1, · · · ,K, (1)

where H̆k ∈ ICMr×Mt is the channel matrix and ηk ∼
CN (0, I) is the additive noise. The signal vector x transmitted
by the BS can be expanded as x = T

∑
k∈U Vksk, where U

is the set of users that are co-scheduled (or grouped) together.
T is the Mt ×M analog transmit precoding matrix such that
T†T = I. Here we adopt the framework from [15] where the
cell specific precoding matrix T is optimized at a coarse time
scale and can thus be regarded as a constant matrix in the
fine time-scale problem of interest to us. Vk, k ∈ U is the
M × rk digital transmit precoding matrix used to transmit to
the kth user and has rk columns. sk is the rk×1 symbol vector
intended for the kth user. Furthermore, let S =

∑
k∈U rk be

the total number of co-scheduled streams or total rank and let
the total power for all streams be ρ. We consider the practically
most important power allocation, which is to equally split the
available power among all transmitted streams. In this case
we have E[ss†] = (ρ/S)I with each column of Vk, ∀ k ∈ U
(and hence of TVk, ∀ k ∈ U) normalized to unit norm.
We note that this power allocation is also referred to as
column-norm based normalization [16] and is mandated for
MU-MIMO performance evaluations in 3GPP LTE. We also
consider another practical power allocation referred to as the
matrix norm based normalization [16] in which the sum of all
squared column norms (across all Vk, ∀ k ∈ U) is normalized
to unity, together with E[ss†] = ρI. We define Hk to be
the estimate of H̆kT, ∀ k available at the BS and adopt the
conventional approach where the BS assumes the estimates at
hand to be sufficiently accurate.

Define A = [Ak]k∈U , where Ak =
√
ρ′Vk, ∀ k ∈ U ,

as the scaled and concatenated digital transmit precoding
matrix of size M × S for MU-MIMO transmission, where
the scaling factor ρ′ = ρ/S for column-norm and ρ′ = ρ
for matrix-norm based normalizations, respectively. Each user
in order to receive its data, employs an RF analog receive
beamforming front-end followed by baseband linear detection.
Such an architecture is significantly preferred in mmWave

systems [13]. In this work, we incorporate the practically
meaningful scenario in which each user uses a codebookW for
analog receive beamforming. To describe the data reception we
focus on any user k. To receive data sent on each one of its rk
streams that user k employs rk unit-norm beamforming vectors
fromW . Let Gk denote the Mr×rk matrix whose columns are
these beamforming vectors. The received signal post receive
beamforming is down-converted and detected at baseband.
We consider two types of detection methods at baseband.
The first one is a simple linear detector at the baseband, in
which no further mitigation is carried out to suppress inter-
stream residual interference. We refer to this method as the
matched filter (MF) baseband detector. The resulting signal-
to-interference plus noise ratio (SINR) for the ith stream (or
layer) of the kth user is given by

γi,k =
|[G†kHkAk]i,i|2

1 +
∑S
j=1 |[G

†
kHkA]i,j |2 − |[G†kHkAk]i,i|2

, (2)

where i = 1, · · · , rk and [.]i,j is the (i, j)th element of the
matrix argument. The corresponding information rate is given
by

ηi,k = log(1 + γi,k), (3)

so that the information rate over all the streams of user k can
be written as Rk =

∑rk
i=1 ηi,k. The second detection method

that we consider is the non-linear optimal method of detection
at the baseband, for which the corresponding information rate
over all streams is given by

Rk = log |I + Q−1
k G†kHkAk(G†kHkAk)†| (4)

where Qk = G†kGk +
∑
`∈U\kG

†
kHkA`(G

†
kHkA`)

† repre-
sents the covariance matrix of additive noise and interference
from streams intended for other users. Note that the additive
noise is colored by the analog receive beamforming operation.

We outline the three (digital) linear transmit precoding
methods considered in this paper which cover all the main
practical ones. Consider any given user set U along with a
rank vector r. In all these methods it is assumed for precoder
construction that each user k ∈ U that is assigned rank rk
will receive data only in the span of its chosen rk receive
beamforming vectors in Gk. Consequently, we define the
rk ×M matrix H̃k = G†kHk.

The construction of the transmit precoder matrices then
proceeds by using the matrices {H̃k}k∈U .

• Zero Forcing (ZF): Let H̃ =

([
H̃†k

]
k∈U

)†
denote the

S×M composite matrix, where we recall S =
∑
k∈U rk.

We obtain the matrix V = H̃†(H̃H̃†)−1D where D
is a diagonal matrix which normalizes all columns of
H̃†(H̃H̃†)−1 to have unit norm. Then Vk is obtained
as the sub-matrix of V formed by the rk columns
corresponding to user k.

• Block Diagonalization (BD): Let H̃k̄ = ([H̃†j ]j∈U :j 6=k)†

denote the (
∑
j∈U,j 6=k rj) × M composite matrix that

excludes user k. We then obtain the matrix (I −
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H̃†
k̄
(H̃k̄H̃

†
k̄
)−1H̃k̄)H̃†k(G†kGk)−1/2 and then form the

M × rk matrix Vk by choosing its first rk dominant left
singular vectors corresponding to its first rk dominant
singular values.

• Maximal Ratio Transmission (MRT): Let H̃ =([
H̃†k

]
k∈U

)†
denote the S × M composite matrix as

before. Here we consider the matrix norm based nor-
malization. The transmit precoder Vk used for any user
k ∈ U with rank rk, is simply the matrix H̃†k/‖H̃‖.
Notice that the choice of the precoder depends on the
co-scheduled users via the normalization factor.

We note that column-norm based normalization can outper-
form matrix norm based normalization for ZF transmit precod-
ing, whereas the converse holds true for MRT precoding [16].
This observation has motivated the above power allocation
choices. Also note that for BD precoding the optimal detector
can be implemented as a linear detector, whereas for ZF pre-
coding MF detector is optimal whenever G†kGk = I, ∀ k ∈ U
[14].

III. PROBLEM FORMULATION

Our objective in the subsequents sections is to design
efficient algorithms to optimize

∑
k∈U wkRk, where wk is

the weight or priority assigned to user k, under certain
practical constraints. Due to space constraints, we consider
only the most natural pairings of precoder construction and
receiver detection, which are to use either MRT or ZF transmit
precoding with the MF basedband detection. On the other
hand, we suppose that BD precoding is used in conjunction
with optimal baseband detection. Indeed, these pairings were
assumed (and subsequently widely adopted) in the notable
papers that proposed the three transmit precoding methods [2],
[4]. Note that for each such combination of the aforementioned
transmit precoder construction and receiver detection methods,
the resulting weighted sum rate depends on the choice of user
set U as well as the choice of their assigned transmit ranks
and the receive beamforming vectors. Moreover, there can be
a non-linear dependence (or coupling) between the choice
of receive beamforming vectors and the transmit precoder
construction. As a result, the optimization problem at hand
appears to be intractable at the first glance. Indeed, [10]
has considered another variation of this problem (with ZF
precoding and full power optimization) and shown that the
objective function therein is not submodular (cf. definitions in
the appendix). We first verified that the objective functions in
our problems are also not submodular and then proceeded to
unearth and exploit the structure hidden in them.

IV. STRUCTURE IN THE RATE EXPRESSION

We begin by considering both MRT and ZF transmit
precoders with matched filter baseband detection. Our first
observation then is that we can regard each user and receive
beamfomer combination as a virtual user. In particular, con-
sider any stream of any user k that is received along any
beamformer w ∈ W , and define ψ as the corresponding virtual

user with its channel being the 1 ×M vector, z†ψ = w†Hk.
The received statistic for this virtual user can be written as

yψ = z†ψx + ηψ (5)

where ηψ ∼ CN (0, 1). Define a ground set Ψ of all virtual
users ψ such that ‖zψ‖2 ≥ ε > 0 so that the size of Ψ is
at-most K|W|. Note here that ε > 0 is any arbitrarily chosen
threshold. 1 Consider any choice of co-scheduled virtual users
A ⊆ Ψ. Suppose MRT precoding at the BS. Consider any
choice of co-scheduled virtual users A ⊆ Ψ and define the
matrix ZA = [zψ]ψ∈A of size M × |A|. For this choice using
(5) and (3) the rate for virtual user ψ ∈ A is given by

Rψ(A) = log

(
1 +

ρ‖zψ‖4/‖ZA‖2

1 +
∑
ψ′∈A\ψ ρz

†
ψzψ′z†ψ′zψ/‖ZA‖2

)
(6)

On the other hand, for any ψ ∈ Ψ \ A, we set Rψ(A) = 0.
We offer the following result that is proved in the appendix
and reveals the structure in the rate expression.

Proposition 1. The rate achieved by any virtual user ψ ∈ Ψ
under MRT precoding and set A ⊆ Ψ : A 6= φ, where φ
denotes the empty set, can be expressed as

Rψ(A) = log

‖ZA‖2 +
∑
ψ′∈A

ρz†ψzψ′z†ψ′zψ


︸ ︷︷ ︸

4
=fMRT

ψ (A)

−

log

‖ZA‖2 +
∑

ψ′∈A\ψ

ρz†ψzψ′z†ψ′zψ


︸ ︷︷ ︸

4
=gMRT

ψ (A)

(7)

Further, for A = φ we define Rψ(φ) = 0 with
fMRT
ψ (φ) = gMRT

ψ (φ) = − log(2/ε). Then, the set functions
fMRT
ψ (.), gMRT

ψ (.) are both submodular set functions over the
set Ψ.

We now consider the more complicated case of ZF pre-
coding. The key complication here that we need to overcome
is that the transmit precoder for each user depends not only
on its channel matrix and choice of receive beamformers, but
also on those of other co-scheduled users. Moreover, the latter
dependence is non-linear and not just via a normalization
factor. We again use the virtual user concept and recall the
model in (5) for some virtual user ψ ∈ Ψ. Consider any choice
of co-scheduled virtual users A ⊆ Ψ and define the matrix
ZA = [zψ]ψ∈A as before, along with ZA\ψ = [zψ′ ]ψ′∈A\ψ .
Further, suppose that the matrix Z†AZA is invertible which is
required for the zero forcing operation to be defined. The ZF
matrix is given by ZA(Z†AZA)−1D, where D is the diagonal
matrix normalizing the columns of ZA(Z†AZA)−1. We can

1Such a threshold is anyway necessary in practice since a virtual user whose
channel vector norm is poorer than a minimum threshold will never be selected
as it cannot support the smallest available MCS.
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then express the rate for virtual user ψ ∈ A as

Rψ(A) = log
(
1 + ρ‖zψ‖2/|A|−

ρz†ψZA\ψ(Z†A\ψZA\ψ)−1Z†A\ψzψ/|A|
)

(8)

On the other hand, for any ψ ∈ Ψ \ A, we set Rψ(A) = 0.
Note here that the residual

Res(ψ,A \ ψ)
4
= ‖zψ‖2 − z†ψZA\ψ(Z†A\ψZA\ψ)−1Z†A\ψzψ

is the squared norm of the component of zψ in the orthogonal
complement of ZA\ψ and hence is always non-negative.

We now proceed to unearth the structure in this rate expres-
sion. Towards this end, let us first define the matrix

B = ρZ†ΨZΨ (9)

with the understanding that BA, ∀ A ⊆ Ψ is the principal
submatrix of B with row and column indices drawn from A.
Note that BA = ρZ†AZA ∀ A ⊆ Ψ. Along similar lines, for
each virtual user ψ ∈ Ψ and any scalar a ≥ 0, let us define
the matrix,

C(a, ψ) = aeψe
†
ψ + ρZ†ΨZΨ (10)

where eψ is a |Ψ|×1 vector that has a one as its ψth element
and zeros everywhere else. As before, let CA(a, ψ), ∀ A ⊆ Ψ
be the principal submatrix of C(a, ψ) with row and column
indices drawn from A. Let us next define a family of subsets,
I, of Ψ such that φ ∈ I and all subsets A of Ψ for which
BA is invertible are members of I and conversely for any
non-empty member A ∈ I, BA is invertible. It is readily seen
that this family is downward closed and that all singleton sets
{ψ}ψ∈Ψ are members of I.

Our next result proved in the appendix, reveals that it is
possible to write (8) in a more amenable form. We adopt
the convention that 0 log(0) = 0 and that log |.| returns zero
whenever the input matrix is empty or null matrix.

Proposition 2. The rate achieved by any virtual user under
ZF precoding can be expressed as

Rψ(A) = (log |CA(|A|, ψ)| − |A| log |A|)︸ ︷︷ ︸
fZF
ψ (A)

−

(
log
∣∣BA\ψ∣∣− |A \ ψ| log |A|

)︸ ︷︷ ︸
gZF
ψ (A)

(11)

The functions fZF
ψ (.), gZF

ψ (.) are both submodular over the
family I.

We now proceed to analyze the case where the BS employs
BD transmit precoding and each user employs the optimal
baseband detection. In this case we need to jointly consider
the rate across all virtual users that correspond to the same
(real) user. Furthermore, we need to account for the coloring
of the noise due to receive beamforming. To make the problem
tractable, we follow an approach where we first assume that
the power per stream (virtual user) is given and does not vary
with the number of selected virtual users. This assumption
results in no loss of optimality if we also consider all possible

total number of streams that can be scheduled, and solve the
problem at hand for each such total number. In particular,
for each value, S, of the total number of streams, we fix the
power per stream to be ρ̂ = ρ/S and solve the weighted sum
rate maximization under the constraint that no more than S
streams can be scheduled. Then, suppose that we are any given
a value for the power per stream, ρ̂. Let u : Ψ→ {1, · · · ,K}
denote a scalar valued function which returns the actual user
corresponding to any virtual user in Ψ. Similarly, let w : Ψ→
W denote a vector valued function which returns the receive
beamforming vector corresponding to any virtual user in Ψ.
We will use the index k ∈ {1, · · · ,K} to denote an actual
user. For each user k ∈ {1, · · · ,K}, define the matrix

F(k) = ρ̂Z†ΨZΨ + L(k), (12)

where L(k) = [`
(k)
ψ,ψ′ ]ψ,ψ′∈Ψ is a |Ψ| × |Ψ| matrix whose

(ψ,ψ′)th entry is given by

`
(k)
ψ,ψ′ =

 w(ψ)†w(ψ′), u(ψ) = u(ψ′) = k

0, else
(13)

As done previously, we let F
(k)
A (L

(k)
A ), ∀ A ⊆ Ψ denote

the principal submatrix of F(k) (L(k)) with row and column
indices drawn from A. We offer the following result whose
proof is deferred to [14].

Proposition 3. The rate achieved by any user under BD
precoding can be expressed as

Rk(A) = log
∣∣∣F(k)
A

∣∣∣︸ ︷︷ ︸
fBD
k (A)

−

(
log |F(k)

A\{ψ:u(ψ)=k}|+ log |L(k)
A∩{ψ:u(ψ)=k}|

)
︸ ︷︷ ︸

gBD
k (A)

(14)

The functions fBD
k (.), gBD

k (.) are both submodular over the
family I.

V. ALGORITHM DESIGN FRAMEWORK

We will illustrate the design frame work that is based on
optimizing the difference of submodular (DS) set functions
[11]. We proceed to explain the DS framework for ZF precod-
ing, while noting that other precoding methods can be handled
similarly. Then, the optimization problem at hand can be posed
as

max
A∈I & A∈J

∑
ψ∈Ψ

Rψ(A)

 , (15)

where we use the family of sets J to impose further con-
straints. We consider two key practical constraints:
• The total number of selected virtual virtual users should

not exceed a bound, i.e., a cardinality constraint |A| ≤ St
is imposed, where St is the number of transmit RF chains.

• The total number of selected virtual virtual users that
correspond to the same real user k should not exceed a
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bound, i.e., a cardinality constraint |{ψ ∈ A : u(ψ) =
k}| ≤ Sr,k, ∀ k is imposed, where Sr,k is the number of
receive RF chains at user k.

Let J be the collection of all subsets of Ψ that meet the
aforementioned two constraints. Then, we have the following
observation that follows upon verifying the properties stated
in the appendix.

Proposition 4. The family J defines a matroid over Ψ.

Using (11) we can re-state (15) as

max
A∈I & A∈J

∑
ψ∈Ψ

(fZF
ψ (A)− gZF

ψ (A))

 . (16)

The DS framework entails an iterative approach in which each
iteration seeks to improve the current best solution at hand
by solving a simpler maximization problem. Suppose at any
iteration, the current best solution is given by Â. Then, let
g(A/B)

4
= g(A∪B)−g(B) define the marginal gain obtained

upon adding set A to set B for any set function g(.), for any
subsets A,B of a ground set such that g(B), g(A∪B) are both
defined. Next, define a modular upper bound as follows

gZF,UB

Â,ψ
(A)

4
= gZF

ψ (Â)−
∑
ψ′∈Â

gZF
ψ (ψ′/Â \ ψ′) +

∑
ψ′∈A

aÂ,ψ(ψ′), ∀ A ∈ I, (17)

where

aÂ,ψ(ψ′) =

{
gZF
ψ (ψ′), ψ′ /∈ Â
gZF
ψ (ψ′/Â \ ψ′) else

(18)

It can be shown that

gZF,UB

Â,ψ
(A) ≥ gZF

ψ (A), ∀ A ∈ I, (19)

with equality in (19) at Â = A. Thus, RÂ,ψ(A) = fZF
ψ (A)−

gZF,UB

Â,ψ
(A), ∀ A ∈ I, satisfies RÂ,ψ(A) ≤ Rψ(A), ∀ A ∈ I

with equality at Â = A. With this bound in hand, we proceed
to solve the following problem

max
A∈I & A∈J

{RÂ,ψ(A)}, (20)

Let Ă be an obtained optimized solution. Then, if RÂ,ψ(Ă) >

RÂ,ψ(Â) we can be sure that the current best solution at
hand has been improved, i.e., Rψ(Ă) > Rψ(Â). The key
property of (20) is that since the objective is now a submodular
set function and the constraint is a matroid, (20) can be
relatively well optimized via simple methods such as the
classical greedy method [17]. An important by-product of the
submodularity of the objective is that we can use the Lazy
Greedy implementation to significantly lower the complexity
of the greedy method [18]. The DS procedure terminates if
there is no improvement in the current best solution at hand.
Otherwise, we proceed to the next iteration using Â → Ă as
the current best solution.

VI. SIMULATION RESULTS

In this section we present our simulation results to demon-
strate the utility of the DS framework. We first consider a
simple setup comprising of a single cell with narrowband
i.i.d. Rayleigh fast fading and randomly dropped single receive
antenna users. The BS is equipped with multiple (St ≥ 1) RF
chains and uses a fixed set of columns from the DFT matrix as
its analog precoder. In Figs. 1 and 2 we plot the cell average
sum rate versus the transmit power and the number of transmit
antennas, respectively. In these figures we have compared our
proposed algorithm (using the DS framework and lazy greedy
efficient implementation) with: the SU-MIMO scheme where
only one user is scheduled in each slot, random selection
(where a fixed number St of users are randomly chosen in each
slot), the conventional greedy [7] and the optimal exhaustive
search based one, respectively. As seen from the figures our
scheme performs quite close to the optimal brute-force one.

We next consider an mmWave network employing OFDMA
for DL access. This network comprises of 6 access points
or base stations and 57 users, that were dropped following
the 3GPP HetNet distribution. Each BS is equipped with
Mt = 16 transmit antennas, St = 4 RF chains and uses an
analog precoder whose columns are selected from a transmit
beamforming codebook. The transmit beamforming codebook
comprises of 16 equal norm constant-magnitude vectors that
are also mutually orthogonal. The analog precoder matrix em-
ployed by each BS remains fixed for the frame duration, where
each frame comprises for several subframes. The mmWave
channel was emulated by building upon the freely available
NYU simulator based on [19] and PHY parameters such as
subframe duration, number of OFDM symbols in a subframe
etc. were chosen as per the Verizon 5G standard. On the other
hand, for convenience we set each user to be equipped with
one receive antenna so that the receive beamforming codebook
becomes degenerate, i.e., W = {1} and each user can be
assigned only one stream (thus one virtual user per actual
user). We considered the following two ways of choosing the
analog precoder for each BS and associating users with it.

• The baseline approach is to associate each user to the BS
from which it sees the strongest average receive power
under the omni pattern. Then each BS is assigned all 16
columns from the transmit precoding codebook.

• In the second approach user association and analog
transmit precoder optimization is done in an alternating
manner. The details of this method are beyond the scope
of this paper. Each BS is assigned at-least 4 columns from
the transmit precoding codebook, so that M ≥ St = 4 is
ensured for each BS.

Once the user association and the analog precoder choice
for each BS is obtained, the fine (per sub-frame) scheduling
(which is of primary interest in this paper) is done. The fine
scheduling seeks to optimize a weighted sum rate in each
subframe, where the weights are updated to optimize the PF
utility over the frame duration. We considered the following
options for the sub-frame scheduling:
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Figure 1: Sum rate vs Transmit power for fixed number of
users, RF chains and antennas

Figure 2: Sum rate vs Transmit antennas for fixed number of
users, RF chains and transmit power

• Single-user scheduling: Only implemented for the base-
line approach for analog transmit precoder and user
association choice. Here at most one user is scheduled
on each RB.

• Random user selection: Only implemented for the base-
line approach for analog transmit precoder and user
association choice. Here 4 users were randomly chosen
on each RB.

• Proposed algorithm using the DS framework (with the
lazy greedy efficient implementation): Implemented for
the baseline approach as well as optimized analog trans-
mit precoder and user association.

• Exhaustive search: Only implemented for the optimized
analog transmit precoder and user association.

Our results are shown in Fig. 3. Comparing the first three
schemes with baseline approach for analog transmit precoder
and user association choice, we note that a significant gain
is obtained by our proposed algorithm (which is referred to
as Lazy Greedy for this baseline approach) over the single-
user and random scheduling. Moving on to the optimized
analog transmit precoder and user association, we see that our
proposed scheme achieve about 90% of the exhaustive search
based one. Here we note that the subframe duration is very
small (0.2ms) which makes the exhaustive search based sub-
frame scheduling impractical even with a few users.

VII. CONCLUSIONS

In this paper we proposed a new framework for designing
MU-MIMO scheduling algorithms. We established that our

Figure 3: Comparison of Scheduling Algorithms

framework can incorporate practically important choices of
linear transmit precoding as well as power allocation. In
addition, it can incorporate analog receive beamforming as
well. We used this framework to design an algorithm and
demonstrated that significant gains can be achieved at a
reasonable complexity.

APPENDIX

Definition 1. Let Ω be a ground set and h : 2Ω → IR be a
real-valued set function defined on the subsets of Ω. The set
function h(.) is a submodular set function over Ω if it satisfies,

h(B ∪ a)− h(B) ≤ h(A ∪ a)− h(A), (21)
∀A ⊆ B ⊆ Ω & a ∈ Ω \ B.

Definition 2. (Ω, I), where I is collection of some subsets of
Ω, is said to be a matroid if
• I is downward closed, i.e., A ∈ I & B ⊆ A ⇒ B ∈ I
• For any two members F1 ∈ I and F2 ∈ I such that
|F1| < |F2|, there exists e ∈ F2\F1 such that F1∪{e} ∈
I . This property is referred to as the exchange property.

Definition 3. Let I be any family of subsets of Ω that is
downward closed. We say that a real-valued set function h :
I → IR is submodular over I, if it satisfies (21) for each
choice of A,B, a ∈ I : A ⊆ B & a /∈ B with B ∪ a ∈ I.

Lemma 1. Consider any N × N positive definite matrix M
and let MS , ∀ S ⊆ Ω = {1, · · · , N}, denote the principal
submatrix of M with row and column indices drawn from S.
Then, the set function defined as h(S) = log |MS |, ∀ S ⊆ Ω
is a submodular set function over Ω. Thus, for any j ∈ Ω, the
set function defined as hj(S) = log |MS\j |, ∀ S ⊆ Ω is also
a submodular set function over Ω.

Lemma 2. Consider any choice of co-scheduled virtual users
A ⊆ Ψ and any virtual user ψ ∈ A. Define the matrix
ZA = [zψ]ψ∈A along with ZA\ψ = [zψ′ ]ψ′∈A\ψ . Further,
define diagonal matrices EA = diag{eψ′}ψ′∈A and EA\ψ =
diag{eψ′}ψ′∈A\ψ . Then, we have,

|EA + Z†AZA| = |EA\ψ + Z†A\ψZA\ψ| ×

(eψ + ‖zψ‖2 − z†ψZA\ψ(EA\ψ + Z†A\ψZA\ψ)−1Z†A\ψzψ) (22)

Note that when EA\ψ = 0 then,

|EA + Z†AZA| = |Z
†
A\ψZA\ψ|(eψ + Res(ψ,A \ ψ))

where Res(ψ,A \ ψ) = ‖zψ‖2 −
z†ψZA\ψ(Z†A\ψZA\ψ)−1Z†A\ψzψ
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Lemma 3. We collect a few facts that follow after some
algebra.
• The real-valued functions −x log(x),∀ x ≥ 0 and
−x log(x + 1), ∀ x ≥ 0 are both concave in x for all
x ≥ 0.

• For any fixed a ≥ 0, the real-valued function −(a +
1) log(a + x + 1) + a log(a + x),∀ x ≥ 0 is decreasing
in x for all x ≥ 0.

• The real-valued function −x log(x+1)+x log(x),∀ x ≥
0 is decreasing in x for all x ≥ 1.

Proof of Proposition 1
Note first that the rate expression in (7) satisfies Rψ(A) =

0, ∀ ψ /∈ A. Further, for each ψ ∈ A it can be readily verified
that (7) follows upon expressing the RHS of (6) in a different
form. We will prove that the first term fMRT

ψ : 2Ψ → IR in the
RHS of (7) is a submodular set function over Ψ, for each ψ ∈
Ψ. The second term gMRT

ψ (.) can be shown to be submodular
in an analogous manner [14]. We invoke the following property
of the logarithm function,

log(c+ e)− log(c) ≤ log(d+ f)− log(d), (23)
∀ 0 < d ≤ c & f ≥ e ≥ 0.

The above property follows from the monotonicity and con-
cavity of the logarithm function. Considering any E ⊆ F ⊆
Ψ : E 6= φ and any ψ′′ ∈ Ψ \ F , we define

e = f = ‖zψ′′‖2 + ρz†ψzψ′′z†ψ′′zψ,

d = ‖ZE‖2 +
∑
ψ′∈E

ρz†ψzψ′z†ψ′zψ,

c = ‖ZF‖2 +
∑
ψ′∈F

ρz†ψzψ′z†ψ′zψ (24)

Note that the scalars so defined satisfy d ≤ c and f ≥ e so
that we can invoke (23) with this choice to verify that the
required condition in (21) is satisfied. Now consider the case
E = φ. Clearly, when F = φ the required condition is trivially
satisfied. Hence, suppose that F 6= φ and define the scalars
c, e & f as in (24). To prove that (21) indeed holds we need
to show that

log(c+ e)− log(c) ≤ log(e)− fMRT
ψ (φ) (25)

Note that since c ≥ ε the LHS in (25) is clearly no greater
than log(1 + e/ε). Therefore, (21) holds if we can show that
−fMRT

ψ (φ) ≥ log(1/e+1/ε). Since e ≥ ε, the latter inequality
is true for our choice fMRT

ψ (φ) = − log(2/ε).
Proof of Proposition 2
We first consider the case A ∈ I with ψ ∈ A. Here, we

can write (8) as

Rψ(A) = log
(
|A|+ ρ‖zψ‖2−

ρz†ψZA\ψ(Z†A\ψZA\ψ)−1Z†A\ψzψ

)
− log |A| (26)

Invoking Lemma 2 we can re-write the RHS of (26) to obtain

Rψ(A) = log |CA(|A|, ψ)| − log |A| −
log
∣∣CA\ψ(|A|, ψ)

∣∣ (27)

Then, since BA\ψ = CA\ψ(|A|, ψ) and log |A| =
|A| log |A|− (|A|− 1) log |A|, we can deduce that (11) holds.
On the other hand whenever ψ /∈ A, we can verify that (11)
yields Rψ(A) = 0 which is consistent.

We proceed to prove the submodularity of gZF
ψ (.) for each

ψ ∈ Ψ over I first. Towards this end we arbitrarily pick any
ψ ∈ Ψ and consider each one of the two terms whose sum
gives gZF

ψ (.). Considering the first term, if we define h(A) =

log
∣∣BA\ψ∣∣ , ∀A ⊆ Ψ, then this set function can be verified

to be submodular over I upon invoking Lemma 1. Now for
the second term we define h(A) = −|A \ ψ| log |A|, ∀A ⊆
Ψ. We will show that this set function can be verified to be
submodular over Ψ (and hence over I). Consider any E ⊆
F ∈ Ψ with any ψ′′ ∈ Ψ \ F . To establish submodularity
when ψ /∈ F (so that ψ /∈ E) and ψ′′ 6= ψ, we need to show
that

−(|E|+ 1) log(|E|+ 1) + |E| log(|E|)
≥ −(|F|+ 1) log(|F|+ 1) + |F| log(|F|) (28)

(28) holds due to the concavity of −x log(x) for all x ≥ 0
stated as the first fact in Lemma 3. Further, when ψ /∈ F but
ψ′′ = ψ, we need to show that

−(|E|) log(|E|+ 1) + |E| log(|E|)
≥ −(|F|) log(|F|+ 1) + |F| log(|F|) (29)

(29) follows from the third fact stated in Lemma 3. Next, when
ψ ∈ E (so that ψ ∈ F) and ψ′′ 6= ψ, we need to show that

−(|E|) log(|E|+ 1) + (|E| − 1) log(|E|)
≥ −(|F|) log(|F|+ 1) + (|F| − 1) log(|F|) (30)

(30) holds due to the concavity of −x log(x+1) for all x ≥ 0
stated as the first fact in Lemma 3. Finally, when ψ /∈ E but
ψ ∈ F and ψ′′ 6= ψ, we need to show that

−(|E|+ 1) log(|E|+ 1) + (|E|) log(|E|)
≥ −(|F|) log(|F|+ 1) + (|F| − 1) log(|F|) (31)

(29) follows by first using the concavity of −x log(x+ 1) for
all x ≥ 0 to deduce

−(|F|) log(|F|+ 1) + (|F| − 1) log(|F|)
≤ −(|E|+ 1) log(|E|+ 2) + (|E|) log(|E|+ 1)

and then using the second fact stated in Lemma 3 to confirm
that

−(|E|+ 1) log(|E|+ 2) + (|E|) log(|E|+ 1)

≤ −(|E|+ 1) log(|E|+ 1) + (|E|) log(|E|).

In summary since gZF
ψ (.) is the sum of two terms that are each

submodular over I, we can confirm that gZF
ψ (.) is submodular

over I.
Now we embark upon the more involved part of proving

the submodularity of fZF
ψ (.) over I, for any given ψ. For

convenience in notation and without loss of generality, we set
ρ = 1. Here although as before fZF

ψ (.) is the sum of two terms,
we have to consider both the terms in fZF

ψ (.) together. This
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is because the first term in fZF
ψ (.) need not be submodular.

However, as we show below, the second term in fZF
ψ (.)

adequately compensates and makes the sum submodular. Let
us define a set function g(A) = −(|A| + 1) log(|A| + 1) +
|A| log |A|, ∀ A ⊆ Ψ. We consider any E ⊆ F ∈ I with
any ψ′′ ∈ Ψ \ F : F ∪ψ′′ ∈ I. Further, it suffices to consider
F : |F| = |E|+1. Then, we proceed to systematically analyze
the first (out of the four possible) case which is the hardest
and whose proof captures all the key techniques needed. The
proofs of the other three cases are given in [14].

Case I: ψ ∈ E: Here, we must have ψ ∈ F and ψ′′ 6= ψ.
Then, we can expand ∆F,ψ′′

4
= fZF

ψ (F ∪ψ′′)−fZF
ψ (F) using

Lemma 2 as

∆F,ψ′′ = log(|F|+ 1 + Res(ψ,F \ ψ ∪ ψ′′))−
log(|F|+ Res(ψ,F \ ψ))

+ log(Res(ψ′′,F \ ψ)) + g(|F|) (32)

We will add and subtract a term and write ∆F,ψ′′ as

∆F,ψ′′ = log(|F|+ 1 + Res(ψ,F \ ψ ∪ ψ′′))−
log(|F|+ Res(ψ,F \ ψ))

+ log(Res(ψ′′,F \ ψ)) + g(|F|)
+ log(|F|+ Res(ψ,F \ ψ ∪ ψ′′))−

log(|F|+ Res(ψ,F \ ψ ∪ ψ′′)) (33)

Similarly we express ∆E,ψ′′
4
= fZF

ψ (E ∪ ψ′′)− fZF
ψ (E) as

∆E,ψ′′ = log(|E|+ 1 + Res(ψ, E \ ψ ∪ ψ′′))−
log(|E|+ Res(ψ, E \ ψ)) + log(Res(ψ′′, E \ ψ)) + g(|E|)
+ log(|F|+ Res(ψ, E \ ψ))− log(|F|+ Res(ψ, E \ ψ)) (34)

Now, a key observation using Lemma 1, Lemma 2and the
fact that |F| = |E|+ 1 is that

log(|E|+ 1 + Res(ψ, E \ ψ ∪ ψ′′)) +

log(Res(ψ′′, E \ ψ))− log(|F|+ Res(ψ, E \ ψ)) ≥
log(|F|+ Res(ψ,F \ ψ ∪ ψ′′)) + log(Res(ψ′′,F \ ψ))

− log(|F|+ Res(ψ,F \ ψ)) (35)

In particular, to derive (35) we invoke Lemma 1 on the matrix
M = Z†F∪ψ′′ZF∪ψ′′ + EF∪ψ′′ , where EF∪ψ′′ is a diagonal
matrix with |E|+ 1 on the diagonal position corresponding to
ψ and zeros elsewhere. Then, using (35) with (34) and (33),
to prove submodularity, i.e., ∆F,ψ′′ ≤ ∆E,ψ′′ , it suffices to
show that

log(|F|+ 1 + Res(ψ,F \ ψ ∪ ψ′′))−
log(|F|+ Res(ψ,F \ ψ ∪ ψ′′)) + g(|F|) ≤

log(|E|+ 1 + Res(ψ, E \ ψ))

− log(|E|+ Res(ψ, E \ ψ)) + g(|E|) (36)

Then, since log(|E|+1+Res(ψ, E \ψ))− log(|E|+Res(ψ, E \
ψ)) ≥ 0, it suffices to show that

log(|F|+ 1 + Res(ψ,F \ ψ ∪ ψ′′))−
log(|F|+ Res(ψ,F \ ψ ∪ ψ′′)) + g(|F|) ≤ g(|E|) (37)

To show (37) we exploit the concavity of the logarithm
function and the non-negativity of the residual to deduce the
fact that

log(|F|+ 1 + Res(ψ,F \ ψ ∪ ψ′′))−
log(|F|+ Res(ψ,F \ ψ ∪ ψ′′)) ≤

log(|F|+ 1)− log(|F|) (38)

Using (38) in (37) and recalling that |F| = |E| + 1, we can
see that to establish submodularity in this case, it is enough
to show that

−(|E|+ 1)| log(|E|+ 2) + |E| log(|E|+ 1) ≤
−(|E|+ 1)| log(|E|+ 1) + |E| log(|E|) (39)

Finally, (39) holds true from the second fact stated in Lemma
3.
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