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Abstract—This paper studies the formation of cooperation in
mobile networks following an Evolutionary Game Theory (EGT)
approach. Motivated by real-world human motions in mobile
social networks, we propose a Socialized Speed-Restricted Mo-
bility (SSRM) model to simulate users’ movement. Interactions
among mobile users are formulated as public goods game. To
validate the SSRM model, we first derive its approximated degree
distribution, and prove that exponential and power-law degree
networks can be constructed from SSRM. Then we conduct
extensive simulations to study the evolution of cooperation.
In contrast to the recent work which concluded that random
and homogeneous movement is harmful to cooperation, we find
cooperation is in fact promoted in mobile networks driven by
SSRM. This is mainly due to a reduction of randomness in users’
neighborhood, as well as the degree heterogeneity. Results in
this paper are helpful in understanding cooperative behaviors in
mobile social networks. Our EGT framework can be further used
to study the performance of specific cooperation-based protocols.

I. INTRODUCTION

In recent years, we have witnessed the proliferation of
mobile devices and users. This trend encourages a broad
portfolio of new applications and technologies including wire-
less cooperation. Cooperative protocols allow mobile users
to collaborate and overcome the most critical challenges in
mobile environments such as energy consumption [9], con-
nectivity [16], and spectrum capacity issues [17]. Examples
of wireless cooperation can be found in Disruption Tolerant
Networks (DTN) [10] and cellular networks [20], as well
as other applications like cooperative video streaming [14],
crowdsourcing [24], etc.

While central to the success of a mobile society, coop-
eration does not come for free. Selfish users may choose
not to contribute as it consumes their own resources (such
as energy and bandwidth). Due to selfishness, the number
of cooperators is diminished and it results in the “tragedy
of the commons” [19]. To stimulate cooperation, credit or
reputation-based systems have been developed [11] [1]. The
idea is to reward cooperative actions by virtual payments or
raising user’s reputation. However, deploying these mecha-
nisms incurs additional costs. In credit-based system, cen-
tralized management of currency and tamper-proff hardware
need to be implemented, while in reputation-based system
a network-wide reputation monitoring and update must take
place.

In addition to the above cooperation enforcement schemes,
a considerable amount of efforts have been devoted to game
theoretic analysis of cooperation [15], [18], [23]. Among

them, Evolutionary Game Theory (EGT) has proved to be
an efficient approach to investigate cooperative behaviors
[27]. EGT is used to model an evolutionary (Darwinian)
process where the more fit individuals pass on their strategies
to more offspring and increase their representation in the
population. The typical setup is the following: two strategies
are concerned, Cooperator (C) or Defector (D); fitness is
assumed to be the payoff obtained from pairwise or group
interactions defined in the form of social dilemma games; a
reproduction (or strategy update) model that favors individuals
with higher fitness; the predominant strategy at equilibrium
state implies an evolutionarily stable strategy.

In literature, many factors are found to have an impact
on the evolution of cooperation, including network structure,
payoff heterogeneity and strategic complexity [22]. These
studies have assumed a static network topology. In most recent
research, the network topology was deemed dynamic due to
users’ movement. The evolution is thus more complex as the
time-varying network structure forces the users to interact
with different groups of people. In [4], the players move
randomly with constant velocity and participate in group
interactions. The correlation between cooperation and velocity
is reported: an intermediate degree of mobility was found to be
optimal for the evolution of cooperation. [2], [6], [7] employ
similar network models but study pairwise interactions. They
obtain consistent results as [4].

The shift from static network to mobile network is an
important step towards more realistic network conditions,
yet the underlying mobility patterns have been regarded as
homogeneous. In fact, all the above-mentioned works assume
users to have constant moving speed and they can travel
across the whole network. However, it has been well known
that real-life mobile social networks are heterogeneous [8],
[21], [29], e.g. users frequently visit and stay around a few
“home locations”, and their moving ranges are confined by
heterogeneous gyration radii. These properties are currently
missing in this line of research.

In this paper, we study the formation of cooperation in
mobile networks following the EGT framework. Different
from previous work, we propose a mobility model called
Socialized Speed-Restricted Mobility (SSRM) model to rep-
resent realistic human motions. Motivated by mobile social
networks, in SSRM, every user is initially located at a
randomly picked “home position”. Then a moving area Ai
centered at the home location is drawn from some probability
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distribution to restrict its movement. SSRM is able to charac-
terize both homogeneous and heterogeneous mobility patterns
by adjusting the distribution of Ai. User randomly moves to
a new position within the area per time step. Simultaneously
to the movement, every user encounters instant neighbors if
their distance is smaller than a certain communication range.
We assume each user has a memory of τ time steps, and
is able to accumulate the neighbors encountered during this
period of time. This neighbor collection process can be seen
as an exploration of the neighborhood surrounding the home
position. After every τ time steps, users interact with the
accumulated neighbors by playing the Public Goods Game
(PGG), which is a common model for group interaction. Users
reproduce by updating their strategies based the obtained
payoff. This is seen as one round of evolution. We are
interested in finding the predominant strategy (C or D) after
a long term of evolutions. This paper makes the following
contributions:
– We show that the SSRM model generates similar structure

as mobile social networks. By deriving an approximation
to the degree distribution, we prove that two distributions
that commonly appear in social networks: exponential and
power-law distribution, can be reproduced from SSRM for
large τ .

– An extensive simulation-based study on the evolution of
cooperation is conducted:
◦ We first focus on the simultaneous evolution of mobility

and strategy by letting τ = 1. This is the most popular
setting in recent works [2], [4], [6], [7]. Under SSRM,
we find similar result as previous works, i.e. cooperation
is enhanced at infinitesimal mobility, but damaged when
mobility is moderate.
◦ Then τ is increased to separate the mobility and repro-

duction. This pictures a more realistic evolution as users
are given more time to explore the neighborhood. We
show that cooperation is promoted in this case due to
a reduction in the randomness of neighborhood. It is
also found that degree heterogeneity further encourages
cooperation compared to homogeneous movement.

We believe our findings are helpful to understand cooper-
ative behaviors in mobile social networks. It is also worth
mentioning that although mobile interactions in this paper are
modeled as PGG game, our EGT framework could be used
to study specific cooperation-based mobile applications once
they are formulated in the PGG paradigm such as in [5], [30].

The rest of this paper is structured as follows. Section II
introduces the system model. In Section III, we derive the
approximation to the degree distribution of SSRM model.
The results are verified in Section IV. Section V is devoted
to simulation-based study on the evolution of cooperation.
Finally, conclusion is drawn in Section VI.

II. SYSTEM MODEL

The mobile network under consideration is composed of
users that move according to the SSRM model. To study their
cooperative behaviors, we consider that each user in its move-
ment accumulates neighbors through a collection process, and

engages them to participate in a group interaction modeled
by PGG. Users update their game strategies afterwards to
improve the fitness. Details are presented in the following.

A. Network Geometry

We consider the network extension to be a 2-dimensional
circular space A with area A = πR2. A population of
N(A) mobile users are randomly distributed in the network
according to Poisson Point Process (P.P.P.) of intensity φ, i.e.
P[N(A) = k] = (Aφ)k

k! e−Aφ. Without loss of generality, we
assume φ = 1 throughout this paper, thus the density of
mobile users in the network ρ = N(A)/A ∼ 11 when A
is sufficiently large.

B. Socialized Speed-Restricted Mobility (SSRM) Model

Mobile users move under a speed-restricted model. In the
initial stage (time step t = 0), all users are uniformly and
randomly located at an initial position in the network. Then
we assign each user a circular moving area Ai centered at the
initial position, whose radius Ri restricts its moving speed.
Once the network starts to operate, users will move randomly
and independently within their own circular area. The location
of each user, denoted as Xt

i , will be totally reshuffled from
one time step t to t+ 1.

The size of Ai is denoted as Ai = πR2
i . There are two

ways to determine each user’s Ai in SSRM model:
Homogeneous case: every user has the same moving range

Ri = Runi and moving area Ai = Auni < A.
Heterogeneous case: Ais are treated as independent and

identically distributed (iid) random variables (rv) with proba-
bility density function (pdf) fAi(a). In this paper, we consider
Ai to be either Exponential or Pareto rv, i.e.

fexpAi
(a) =

λ

π
e−

λ
π a, a ≥ 0, (1)

and
fparetoAi

(a) =
α(πµ)α

(πµ+ a)α+1
, a ≥ 0, (2)

where λ, µ and α are positive parameters that control the
degree of heterogeneity in Ai. Both of the two cases imply
that users are more likely to stay in a fixed area around
some home location, and the heterogeneous model further
guarantees the moving areas are different across the users.
Therefore the SSRM model complies with moving patterns
found in mobile social networks [8], [21], [29].

C. Public Goods Game and Strategy Update

In addition to the initial position, each user is randomly
assigned an initial strategy s0

i from C (s0
i = 1) and D (s0

i = 0).
Mobile users have a constant communication range Cr, so that
user i and j are mutual neighbors if

∥∥Xt
i −Xt

j

∥∥ ≤ Cr, where
‖·‖ denotes the Euclidean distance. At each time step t, user
i moves to a new random location in Ai and encounters a set
of neighbors N t

i .
Apart from the mobility model, we define a neighbor

collection process T that incorporates τ time steps. Parameter

1f(n) ∼ g(n) means that limn→∞ f(n)/g(n) = 1.
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τ acts as the memory of mobile users. During the collection
process, user i continues its random movement but keeps the
history of the encountered neighbors. Therefore the set of
neighbors user i accumulates in T is N Ti (τ) =

⋃t0+τ−1
t=t0

N t
i .

Users play a round of PGG after every collection process as
follows. First, each user i forms a group with its neighbors
j ∈ N Ti (τ). Suppose that di is the size of N Ti (τ) and di + 1
is the group size. A single PGG game is played for every
group in the network. Therefore every user i participates
in exactly di + 1 games. We assume that each user has a
fixed amount of resource c to contribute, and a Cooperator
allocates ci = c

di+1 to every group it is involved in, while
Defector contributes nothing. In a single PGG game, the group
accumulates the contributions of Cooperators and multiplies
it by an enhancement factor r. The resulting public goods
are equally distributed among all the participants. The payoff
obtained by each user from a single PGG is equal to its share
of the public goods minus its contribution. As every user is
engaged in multiple PGG games, the total payoff obtained by
user i after T is:

P Ti (τ) =
∑

j∈NTi (τ)∪{i}

∑
l∈NTj (τ)∪{j}

rcls
t0
l

dj + 1
−(di+1)cis

t0
i (3)

Next, individuals update their strategies based on the ob-
tained payoff. Every user i chooses one of its neighbors j at
random. The probability that i takes j’s strategy in the next
collection process is

P[si(t0 + τ) = sj(t0)] =
max{P Tj (τ)− P Ti (τ), 0}
max{P Tk (τ)− P Tl (τ)}

,∀k, l.
(4)

From equation (4), we see that users tend to adopt strategies
of successful neighbors whose payoff is higher than their own.
This is in line with [26] [4]. Up to this point, one round of
evolution is completed. The same process is repeated until the
number of cooperators becomes stable.

III. APPROXIMATED DEGREE DISTRIBUTION OF SSRM
MODEL

In this section, we investigate the degree distribution of
SSRM model. The purpose is twofold: first, to confirm SSRM
indeed generates similar network structure as mobile social
network; second, to facilitate our analysis in Section V. The
latter is motivated by [22], [26], which have shown that degree
distribution can greatly affect the level of cooperation in static
networks.

At the end of a collection process, the network connectivity
is given by N Ti (τ)s. The degree of user i is di. For the sake
of tractability, given the moving area Ai, we approximate di
with the number of users whose initial positions locate in Ai,
and denote it with d̂i. Since the population is generated by
P.P.P process, conditioned on Ai = a, we have d̂i = N(a) =

Poisson(a), i.e. pd̂i|Ai (k|a) = ak

k! e
−a. This approximation

is reasonable because users whose initial positions locate in
Ai have higher probability to encounter i compared to others.
Therefore they are more likely to appear in N Ti (τ) when τ is
large. This will be further verified in numerical simulations.

With respect to the notations in Section II and the assump-
tion made above, we have the following theorem.

Theorem 1. After every neighbor collection process T , the
approximated degree distribution of our considered mobile
network is Mixed Poisson Distribution [13] with mixing
distribution fAi(a):

p(k) = P(d̂i = k)

=

∫ ∞
0

fAi(a)
e−aak

k!
da, k = 0, 1, ...

(5)

Proof. The probability mass function (pmf) of degree dis-
tribution, p(k), can be interpreted as the fraction of users
with d̂i = k when N(A) is sufficiently large. We denote this
fraction as f(k), and

f(k) =
1

N(A)

∑
i

1d̂i=k
=

∑
a∈

⋃
i Ai

na
N(A)︸ ︷︷ ︸
θa

·

∑
Ai=a

1d̂i=k

na︸ ︷︷ ︸
ϕk,a

,

where 1e is the indicator function and is equal to 1 if e is true
and 0 otherwise; na (θa) is the number (fraction) of users with
Ai = a; similarly, ϕk,a is the fraction of users with d̂i = k
among the na users. By taking the limit of A, we obtain

p(k) = lim
A→∞

f(k) = lim
A→∞

∑
a∈

⋃
i Ai

θa · ϕk,a

=

∫ ∞
0

fAi(a) · pd̂i|Ai (k|a)da

=

∫ ∞
0

fAi(a)
e−aak

k!
da, k = 0, 1, ... (6)

In the rest of this section, we derive the approximated
degree distribution for homogeneous and heterogeneous mo-
bility model.

A. Homogeneous Mobility Model

Corollary 1. In the homogeneous case, d̂i is a Poisson rv
with pmf

puni(k) =
e−AuniAuni

k

k!
, k = 0, 1, ... (7)

Proof. In this case, every user has the same moving area
Auni. Therefore fAi(a) = δ(a−Auni), where δ(·) is the Dirac
delta function. The distribution of d̂i can be easily obtained
from equation (6).

B. Heterogeneous Mobility Model

We consider the Exponential and Pareto density function
as in equation (1) and (2).

Corollary 2. For exponential moving area, the pmf of d̂i is
geometric( λ

λ+π ), thus has exponential tail.

Proof. In this case, the degree distribution is
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pexp(k) =

∫ ∞
0

f exp
Ai

(a)
e−aak

k!
da

=
1

k!

∫ ∞
0

akf exp
Ai

(a)e−ada

=
1

k!

∫ ∞
0

akLexp(s)da

∣∣∣∣
s=1

=
1

k!
(−1)k

∂kLexp(s)

∂sk

∣∣∣∣
s=1

,

where Lexp(s) is the Laplace transform of fexpAi
(a). Replace

Lexp(s) with λ/π
λ/π+s we obtain

pexp(k) =
λ

λ+ π
(

π

λ+ π
)k, k = 0, 1, ...

Obviously, the degree is geometric distribution with param-
eter p , λ

λ+π . The Complementary Cumulative Distribution
Function (CCDF) is

F̄exp(k) = (1− p)k = e− ln 1
1−pk = e−Λk.

Therefore the degree distribution exhibits exponential tail.

Corollary 3. For Pareto moving area, the pmf of d̂i is
asymptotically equal to fparetoAi

(k), thus has power-law tail
at infinity.

Proof. When the moving area is drawn from Pareto distribu-
tion, notice that

fparetoAi
(a) = α(πµ)α

aα+1

(πµ+ a)
α+1 · a

−(α+1) , C(a) · aγ ,

where C(a) = α(πµ)
α aα+1

(πµ+a)α+1 is a slowly varying
function [3] with respect to a since

lim
a→∞

C(ξa)

C(a)
= lim
a→∞

ξα+1 (πµ+ a)
α+1

(πµ+ ξa)
α+1 = 1,∀ξ > 0.

In addition, γ = −(α + 1) < −1. We can apply Theo-
rem 2.1 in [28] to obtain the following tail distribution of
ppareto(k):

ppareto(k) ∼ C(k)kγ =
α(πµ)

α

(πµ+ k)α+1
, k →∞

The CCDF is

F̄pareto(k) ∼ (
πµ

πµ+ k
)α ∼ (πµ)αk−α,

which exhibits power-law tail when k is large.

IV. NUMERICAL VALIDATION OF DEGREE DISTRIBUTION

We verify our theoretical results in Section III through
numerical simulations. First, we create a circular space with
area A and generate N(A) users from Poisson(A). Then
the users independently and randomly choose their initial
positions within the space. This process is simulating P.P.P. of
density 1 on the circular plane. Next, every user is assigned a
moving area around its initial position according to our mo-
bility model. We acquire the empirical distribution of degree
approximation d̂i by gathering d̂i =

∑
j

1‖X0
i−X0

j ‖≤Ri ,∀i.

The actual degree distribution is obtained from N Ti (τ)s by
simulating the collection process as in II-C.

Our simulation uses the following configuration: A =
10000, communication range Cr = 0.5, τ = [10, 30, 100].
For the homogeneous distribution, we consider Runi/R to be
in the range 0.03 ∼ 0.05. For exponential moving area, we
consider λ from 0.5 ∼ 2. For Pareto moving area, we consider
µ = 2 and α from 2 ∼ 8. Every simulation is repeated 10
times to reflect an accurate empirical distribution.

Simulation results for the homogeneous case are shown
in Fig. 1 (a)-(c). Looking at the theoretical and empirical
CCDF of d̂i, we see that our result in Corollary 1 is accurate.
Moreover, we compare the distribution of d̂i and di at different
τ . We are interested in the optimal value of τ , denoted as τopt,
at which di is best approximated by d̂i. First, in each of the
subfigures, we observe that when τ increases, the CCDF of
di shifts to the right, causing a higher average degree. This
is intuitive since larger τ means a longer collection process,
thus the average number of encountered nodes is increased.
Secondly, Auni affects τopt. For example, in (a), d̂i is well
aligned with di at τ = 10, but deviates from di when τ = 30
or 100. Increasing Auni, the CCDF of d̂i gets closer to di
at τ = 30. Notice that d̂i, the number of users covered by
Auni, will surely increase with Auni. In the meantime di
increases as well because N Ti (τ) becomes larger as Xi(t)s
are more spread out, and N t

i s are more diverse for a larger
Auni. However, d̂i is more directly influenced by Auni than
di, which explains the phenomenon shown above.

When the moving areas are exponentially distributed, the
semi-logarithmic plots in Fig. 1 (d)-(f) show that our theoret-
ical result for d̂i in Corollary 2 matches the empirical result
very well. As for di, we observe similar phenomenon as in
the homogeneous case: 1) larger τ leads to a longer tail in
the degree distribution; 2) the larger the average moving area,
the larger the value of τopt. In this case, the average moving
area ∝ 1

λ . Therefore τopt ' 30 when λ = 0.5, and τopt ' 10
when λ = 1 or 2.

Lastly, we consider the Pareto moving area. According
to Corollary 3, we are only able to capture the asymptotic
behaviour of d̂i. Therefore we see in the log-log graph (Fig.
1 (g)) that when α = 2 and the magnitude of the tail is
102, d̂i is in good agreement with the power-law distribution.
Otherwise d̂i deviates from the power-law CCDF as the tail
is short. Besides, the distribution of di at different τ and the
value of τopt at different α have the same trend as before.
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Figure 1: Simulation results for degree approximation. Homogeneous: (a)-(c). Exp: (d)-(f). Pareto: (g)-(i).

The numerical results suggest that although our theoretical
distributions of d̂i from Section III are correct, how well they
can approximate the actual degree di depends on the average
moving area as well as τ . In the following simulations we
stick to τ = 30, which provides relatively good approximation
for the considered parameters. Even if d̂i deviates from di,
we see from Fig. IV (d)-(i) that di still has exponential or
pareto tail, i.e. SSRM is able to reproduce real-life degree
distribution in mobile social networks.

V. SIMULATION STUDY ON EVOLUTION OF COOPERATION
UNDER SSRM MODEL

In this section, we study the evolution of cooperation in the
defined mobile network through simulations. The simulation
is divided into epochs of τ time steps. Each epoch corresponds
to a neighbor collection process. The movement and evolu-
tions are simulated based on Section II. Whether cooperation
can survive is indicated by the fraction of cooperators ρc after
a long term of evolutions, given some fixed enhancement
factor r. If ρc is close to 1 at relatively small r, we say
cooperation survives more easily, or is promoted by the
underlying network conditions. In practice, r is normalized
with respect to the average group size 〈d〉 + 1 [4], [22],
[26]. The resulting factor is denoted as η = r

〈d〉+1 . It has
been shown that ideally cooperation prevails at η = 1 in an

10−1110−1010−910−810−710−610−510−410−310−210−1 100

Ri/R

0.0

0.2

0.4

0.6

0.8

1.0

ρ
c

Figure 2: Effects of mobility on cooperation rate. Cr = 1.5
to guarantee network connectivity. η = r/(πC2

r + 1) = 0.9.

infinite, well-mixed population. This serves as a benchmark
in our evaluations. In the simulations, we compute ρc after
10000 epochs with respect to η. The network size A = 1000.
Other configurations are kept the same as the previous section.
Without loss of generality, we set c = 1.

We consider two different evolution processes by adjusting
the value of τ . In the first case, τ = 1 so that the movement
and strategy update occur simultaneously. We find SSRM
has the same impact on cooperation as previous models in
[4] [2] [7]. Then we turn to the evolution with larger τ ,
which leads to more realistic movement (as validated in
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Figure 3: Cooperation rate ρc as a function of η in het-
erogeneous mobile networks when τ = 1. The dotted curves
correspond to homogeneous networks. Curves with the same markers
have the same average moving range. The shaded area projects the
critical range of η for which ρc reaches 0.8.
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Figure 4: Cooperation rate ρc as a function of η in heteroge-
neous mobile networks when τ = 30.

Section IV). Moreover, the separation between movement and
strategy update is more consistent with human behavior as
movement and neighbor collection are microscopic processes
that happen frequently, while strategy update (adaption) takes
much longer time [12]. Simulations reveal that heterogeneous
mobility model significantly promotes cooperation compared
to the homogeneous model. Further investigation is conducted
by correlating such enhancement with the behavior of high
degree users in heterogeneous mobile networks.

A. Simultaneous Evolution of Mobility and Strategy

We first study the case where τ = 1. Users move, play
PGG, and update strategies simultaneously every time step.
In homogeneous SSRM, we vary the value of Runi/R to
reflect different level of mobility. When Runi/R is very small,
the mobile network is reduced to a static one. Users interact
with constant group of neighbors and the group size is Pois-
son(πC2

r + 1). Increasing Runi introduces more randomness
in the evolution, as the set of neighbors changes every time
step. It has been shown in [4] and [7] that a slight increase
in mobility improves users’ ability to discover clusters of
cooperators, while a higher level of mobility strongly reduces
the formation of large cooperator clusters due to invasion of
defectors. Fig. 2 shows the cooperation rate ρc as a function of
mobility level. Our result in a homogeneous mobile network
is consistent with previous studies.

From Fig. 2, cooperation is maximally promoted at
Runi/R = 10−4 � 1. From this point on, ρc drastically
decays. This result is rather pessimistic because in mobile
social networks, the average moving range can be much larger,
i.e. 〈Ri〉 = O(R). Those fast moving users are detrimental

to the formation of cooperation as they may invade already-
grouped cooperator clusters.

To verify this, we examine simultaneous evolution in het-
erogeneous mobile networks. According to our model, the
moving area has heavy tail distribution. Therefore few users
travel in a large area while the majority moves in a very
small range. In the mean time we keep the average moving
range relatively large. We choose λ = [0.5, 1, 2] for the
exponential model, and µ = 2, α = [4, 6, 8] for the pareto
model. With these parameters, 〈Ri〉 /R is (2.6 ∼ 7) · 10−2,
which correspond to points of low cooperation in Fig. 2. We
plot ρc with respect to η. In comparison, we also plot ρc of a
homogeneous network with the same average moving range.
Results are shown in Fig. 3.

Not surprisingly, the level of cooperation increases with η,
as large value of r rewards contributors and thus encourages
cooperation. However, to reach a high cooperation level
ρc = 0.8, η must be at least 1.5 and sometimes even larger
than 2, while in Fig. 2, cooperation prevails at η = 0.9
when moving range is much smaller. Moreover, we have the
following observations in Fig. 3a and 3b:

1) Cooperation emerges more easily as we increase λ or α
(or equivalently, decrease the average moving area).
2) Keeping their average moving ranges the same, homo-
geneous and heterogeneous mobility models have similar
impact on the cooperation level as their critical η are almost
the same.
Observation 1) is consistent with our findings in Fig. 2. To

explain 2), recall that when τ = 1, no matter in homogeneous
or heterogeneous networks, the degree distribution is Poisson
with the same mean πC2

r +1. When the average moving range
is large, users always encounter and interact with different
groups of people characterized by the same distribution.
Heterogeneity in moving area does not make a big difference
in this scenario.

B. Increasing τ Stimulates Cooperation

Now we focus on the evolution of cooperation after a
prolonged collection process. We set τ = 30 and Cr = 0.5.
As validated in section IV, the chosen parameters generate
degree di that can be well approximated by exponential and
pareto distribution. We repeat the simulation in Fig. 3. Results
are shown in Fig. 4.

Comparing Fig. 3 and 4, we clearly see that Cooperators
survive more easily when τ is increased, no matter in ho-
mogeneous or heterogeneous networks (although in Fig. 3,
we bind the critical η for curves with the same marker in
one shaded area, and in Fig. 4 for curves with the same line-
style). Moreover, the cooperation level is improved even more
in heterogeneous networks. In exponential degree network,
cooperation prevails at η ≤ 1 and in pareto degree network it
prevails at η ∼ 1. This is almost as good as the optimal case
in Fig. 2.

First, to explain why cooperation is promoted once we
increase τ , consider the randomness of neighbor set N Ti (τ)
in two different collection processes. When τ = 1, N Ti (1) =
N t0
i , which is a collection of users inside the range Cr around
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Table I: Stability S comparison

Model Top 10% Bot 10%
τ = 1 τ = 30 τ = 1 τ = 30

Exp (λ = 0.5) 0.059 0.348 0.17 0.614
Exp (λ = 1) 0.092 0.47 0.263 0.706
Exp (λ = 2) 0.147 0.571 0.369 0.773

Pareto (α = 4) 0.115 0.531 0.335 0.753
Pareto (α = 6) 0.168 0.6 0.4216 0.815
Pareto (α = 8) 0.2 0.638 0.48 0.8358
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Figure 5: Degree and moving area correlation.

a random location. For a larger τ , this set becomes a union
of multiple such N Ti (1)s. Since every user has a restricted
moving area Ai, when τ increases, this union will not grow
infinitely but is largely limited to the neighbors that frequently
appear in the moving area, i.e. those whose initial positions
are inside Ai. Therefore the randomness is reduced when we
increase τ . As a consequence, the network topology is more
stable. To quantify the randomness, we define the following
stability metric:

S =

M∑
m=1

∣∣∣N Tmi (τ)
∣∣∣

M
∣∣∣⋃Mm=1N

Tm
i (τ)

∣∣∣ .
S is equal to the average size of N Ti (τ) in M epochs

divided by the size of their union. One can easily prove that
0 < S ≤ 1. S = 1 when the N Ti (τ) does not change.
The more diverse (random) the N Ti (τ), the smaller the S.
Comparison in term of S is shown in Table. I. We take
M = 100 and present the average stability of 10% users
with largest (top) and smallest (bot) moving areas. Obviously,
stability in N Ti (τ) is increased for larger τ .

With network randomness being controlled, the difference
between the two mobility models lies in the degree hetero-
geneity. Recall N Ti (30) has exponential or power-law tail
approximation, which is heavier than poisson tail. Therefore
there are more high degree users in the heterogeneous models
than in the homogeneous one. Those users, together with
their neighbors, form clusters that are analogous to social
communities. According to previous studies [26] [25], degree
heterogeneity and clustering promote cooperation on a static
network. Although we are concerning a mobile network, it
has been shown that the restricted moving areas and a large τ
limit the randomness induced by mobility. Consequently the
benefit of degree heterogeneity appears and we observe the
promotion of cooperation in heterogeneous mobile networks.
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Figure 6: Cooperation rate in moving area groups.
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Figure 7: Strategy update frequency in moving area groups.

Next, we take a closer look at the evolution process in
heterogeneous mobile networks. Of particular interests are the
cooperative behaviors of high degree users.

C. Cooperative Behaviors of Heterogeneous Mobile Users

We focus on two instances of heterogeneous mobile net-
works at τ = 30:

1) Exponential with λ = 0.5.
2) Pareto with µ = 2, α = 4.
We first examine the correlation between degree di and

moving area Ai. We group users based on their moving areas
Ai, and plot their average degrees over 100 epochs. The
average degree in every group is displayed as well. As shown
in Fig. 5, user’s degree is positively correlated with its moving
area. In the following, we refer to the users with large moving
areas as “hub”s, as they are usually the centers of communities
in mobile social networks.

Next, we look at the strategy distribution across the moving
area groups, after the system enters equilibrium stage. Fig. 6
shows the average cooperation rate in different groups at η =
1. We see that at steady state, the hubs all become cooperators,
and defectors only exist among non-hub users. In Fig. 7, we
plot the average strategy update frequency. It is shown that
the strategies of hubs rarely change, while non-hub users are
more easily affected by neighbors.

Lastly, we present the snapshots (Fig. 8) of the evolution
process in 4 different stages. Due to the limit of space, only
exponential network is considered here. At T1, there are equal
amount of C and D randomly spread in the space. The marked
users are 3 hub Cooperators and 3 hub Defectors. After 7500
rounds of evolution, all of the hubs evolve to cooperators. In
the meantime, we clearly see that the neighborhood around
hubs is dominated by cooperators, leaving defectors concen-
trated in regions far away from the cluster of cooperators.
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(a) T1. (b) T2500.

(c) T5000. (d) T7500.

Figure 8: Snapshots in exponential mobile network. Cooper-
ators (defectors) are labeled red (blue). Users marked as stars are
cooperators (green) and defectors (yellow) at hubs.

VI. CONCLUSION

In this paper, we employ the EGT framework to study
cooperative behavior in spatial PGG over a mobile system.
A socialized mobility model SSRM is developed to drive
the movement. PGG and strategy update occur after every
neighbor collection process. We first verify that the SSRM
model produces exponential and power-law degree distribu-
tions for a long neighbor collection process. It is also found
that a long collection process reduces randomness in network
connectivity. These two facts explain the main finding in this
paper: cooperation is significantly promoted in mobile social
networks due to the degree heterogeneity and regular moving
patterns. In future, we will use our framework to study specific
cooperative protocols.
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