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Abstract—Recently, Mobile-Edge Computing (MEC) has
arisen as an emerging paradigm that extends cloud-computing
capabilities to the edge of the Radio Access Network (RAN)
by deploying MEC servers right at the Base Stations (BSs).
In this paper, we envision a collaborative joint caching and
processing strategy for on-demand video streaming in MEC
networks. Our design aims at enhancing the widely used Adaptive
BitRate (ABR) streaming technology, where multiple bitrate
versions of a video can be delivered so as to adapt to the
heterogeneity of user capabilities and the varying of network
condition. The proposed strategy faces two main challenges: (i)
not only the videos but their appropriate bitrate versions have
to be effectively selected to store in the caches, and (ii) the
transcoding relationships among different versions need to be
taken into account to effectively utilize the processing capacity at
the MEC servers. To this end, we formulate the collaborative joint
caching and processing problem as an Integer Linear Program
(ILP) that minimizes the backhaul network cost, subject to the
cache storage and processing capacity constraints. Due to the NP-
completeness of the problem and the impractical overheads of the
existing offline approaches, we propose a novel online algorithm
that makes cache placement and video scheduling decisions
upon the arrival of each new request. Extensive simulations
results demonstrate the significant performance improvement of
the proposed strategy over traditional approaches in terms of
cache hit ratio increase, backhaul traffic and initial access delay
reduction.

Index Terms—Collaborative caching; adaptive bitrate stream-
ing; multi-bitrate video; mobile-edge computing; joint caching
and processing.

I. INTRODUCTION

Motivation: Over the last few years, the proliferation
of Over-The-Top (OTT) video content providers (YouTube,
Amazon Prime, Netflix,...), coupled with the ever-advancing
multimedia processing capabilities on mobile devices, have
become the major driving factors for the explosion of on-
demand mobile video streaming. According to the prediction
of mobile data traffic by Cisco, mobile video streaming will
account for 72% of the overall mobile data traffic by 2019 [1].
While such demands create immense pressure on mobile net-
work operators, distributed edge caching has been recognized
as a promising solution to bring video contents closer to the
users, reduce data traffic going through the backhaul links
and the time required for content delivery, as well as help
in smoothing the traffic during peak hours. In wireless edge
caching, highly sought-after videos are cached in the cellular
Base Stations (BSs) or wireless access points so that demands

from users to the same content can be accommodated easily
without duplicate transmissions from remote servers.

Recently, Mobile-Edge Computing (MEC) [2]–[7] has been
introduced as an emerging paradigm that enables a capillary
distribution of cloud computing capabilities to the edge of
the cellular Radio Access Network (RAN). In particular,
the MEC servers are implemented directly at the BSs using
generic-computing platforms, enabling context-aware services
and applications in close-proximity to the mobile users. With
this position, MEC presents an unique opportunity to not only
implement edge caching but also to perform edge processing.
In this paper, we aim at exploiting MEC storage and process-
ing capabilities to improve caching performance and efficiency
beyond what could be achieved using traditional approaches.

Due to the heterogeneity of users’ processing capabilities
and the variation of network condition, user preference and
demand towards a specific video might be different. For
example, users with highly capable devices and fast network
connection usually prefer high resolution videos while users
with low processing capability or low-bandwidth connection
may not enjoy high quality videos because the delay is
large and the video may not fit within the device’s display.
Leveraging such behavior, Adaptive Bit Rate (ABR) streaming
techniques [8], [9] have been widely used to improve the
quality of delivered video on the Internet as well as wireless
networks. In ABR streaming, the quality (bitrate) of the
streaming video is adjusted according to the user device’s
capabilities, network connection, and specific request. Existing
video caching systems often treat each user request equally
and independently, whereby each bitrate version of a video is
offered as a disjoint stream (data file) to the user, which is a
waste of storage.

Our vision: In contrast to most of the existing works on
video caching which are not ABR-aware and mainly rely on
the “store and transmit” mechanism without any processing,
our work proposes to utilize both caching and processing
capabilities at the MEC servers to satisfy users’ requests for
videos with different bitrates. To the best of our knowledge, we
are the first to introduce collaborative joint caching and pro-
cessing in MEC networks. Specifically, owing to its real-time
computing capability, a MEC servers can perform transcoding
of a video to different variants to satisfy the user requests.
Each variant is a bitrate version of the video and a higher
bitrate version can be transcoded to a lower bitrate version.



For example, a video at bit-rate of 5 Mbps (720p) can be
transcoded from the same video at bit-rate of 8 Mbps (1080p).
Moreover, we extend the collaborative caching paradigm to a
new dimension where MEC servers can assist each other to
not only provide the requested video via backhaul links but
also transcode it to the desired bitrate version (for example,
when the requesting server’s processing load is full). In this
way, the requested variant of a video can be transcoded by
any MEC server on the delivery path from where the original
video is located (data provider node) to the home MEC server
(delivery node) of the end user. The potential benefits of this
strategy is three-fold: (i) the original remote content server
does not need to generate different bitrate versions of the same
video, (ii) users can receive videos that are suited for their
network condition and multimedia processing capabilities as
content adaptation is more appropriately done at the network
edge, and (iii) collaboration among the MEC servers enhances
cache hit ratio and balance processing load in the network.

Challenges and contributions: The proposed strategy,
however, faces several challenges. Firstly, caching multiple
bitrate versions of the videos incurs high overhead in terms
of storage. Although hard disk is very cheap nowadays, it is
neither cost-efficient nor feasible to store all these files. Sec-
ondly, real-time video transcoding is a computation-intensive
task. Transcoding of a large number of videos simultaneously
might quickly exhaust the available processing resource on
the MEC servers. Therefore, it is very important to design a
caching and request scheduling scheme that efficiently utilizes
both the given cache and processing resouces. To this end,
we formulate the collaborative joint caching and processing
problem as an Integer Linear Program (ILP) that minimizes
the backhaul network cost, subject to the cache storage and
processing capacity constraints. Due to the NP-completeness
of the problem and the impractical overheads of the existing
offline approaches, we adopt the popular Least Recently Used
(LRU) caching policy and propose a novel online video
scheduling algorithm that makes decision upon arrival of each
new request. It should be noted that our approach does not
need a-priori information about the content popularity and
request arrivals as commonly assumed.

Related Works: In general, content caching has been exten-
sively studied in the context of Information Centric Network
(ICN) (see for example [10], [11] and the references therein).
In [12], [13], the authors develop game theoretic models to
evaluate joint caching and pricing strategies among access
networks, transit networks and content providers in an ICN.
Different from the ICN settings, considerable research efforts
have focused on content caching in wireless networks [14]–
[16], and on exploiting the backhaul links connecting the
BSs for collaborative caching [17], [18]. Recently, the authors
in [19], [20] proposes a cooperative hierarchical caching in
a Cloud Radio Access Network (C-RAN) where the cloud-
cache is introduced as a bridging layer between the edge-
based and core-based caching schemes. The authors propose a
low complexity, online cache management strategy, consisting
of a proactive cache distribution algorithm and a reactive

 

Fig. 1. Illustration of collaborative video caching and processing framework
deployed on MEC network. The cache server implemented on MEC server
acts as both RTP/RTSP client and server.

cache replacement algorithm, to minimize the average delay
cost of all content requests. Along this line, work in [21]
proposes a coordinated data assignment algorithm to minimize
the network cost with respect to both the precoding matrix
and the cache placement matrix in a C-RAN. However, the
heterogeneity of networks and user capabilities have not been
considered in these works to facilitate ABR video streaming.

To account for multi-bitrate video streaming, a number of
works have focused on Scalable Video Coding (SVC) [22]–
[24]. However, SVC is not preferred in industry in the past,
which is partly due to the lack of hardware decoding support,
and especially it may significantly increase power consumption
on mobile devices whose battery capacity is limited.

The works in [25], [26] consider caching and processing
for muli-bitrate (or multi-version) video streaming, which are
closest to our work. However they only study on one cache
entity, as opposed to the collaborative scheme of multiple
caching/processing servers in our paper. Furthermore, the
proposed technique in [26] resolves the optimization problem
from scratch every time there is a new request arrival, thus re-
sulting in re-directing large numbers of pre-scheduled requests.
On the other hand, the heuristic solution in [27] requires the
knowledge of the content popularities, which may be hard to
estimate accurately in practice.

Paper organization: The remainder of this paper is orga-
nized as follows: In Section II, we describe considered caching
system. In Section III, we formulate the joint collaborative
caching and processing problem and present the proposed
online algorithm. Section IV presents our simulation results.
Finally we conclude the paper in Section V.

II. MEC CACHING SYSTEM

In this section, we present the envisioned distributed caching
system deployed on MEC networks, followed by the settings
of the considered model.



 

Fig. 2. Illustration of possible (exclusive) events that happen when a user request for a video. (a) The video is obtained from cache of the home BS; (b) a
higher bitrate version of the video from cache of the home BS is transrated to the desired bitrate version and deliver to the user; (c) the video is retrieved
from cache of a neighboring BS or from the origin content server; (d) a higher bitrate version of the video from cache of a neighboring BS is transrated using
the co-located transcoder and is then transfered to the home BS; (e) similar to (d) but the transcoding is done at the home BS’s transcoder.

A. System Architecture

As shown in Fig. 1, a MEC network consists of multiple
MEC servers connected via backhaul links. Each MEC server
is deployed side-by-side with the BS in a cellular RAN,
providing computation, storage and networking capabilities to
support context-aware and delay-sensitive applications in close
proximity to the users. In this paper, we envisage the use
of MEC servers for enabling video caching and processing.
The concept of MEC cache server is similar to the cache
proxy server in the Internet [25], however we consider these
servers in a collaborating pool that could share content and
processing resources. In particular, each cache server acts as
a client to the origin content server (in the Internet) and to
other peer cache servers. An RTP/RTSP client is built into
the server to receive the streamed content from other servers
via backhaul links and put it into the input buffer. If needed,
the transcoder will transcode the input stream to a desired
bitrate stream and pushes it out to the output buffer; otherwise
the input buffer is directly moved to the cache and/or output
buffer for transmitting to the end users. Here, an RTP/RTSP
server is built to stream the video to the end users and to other
servers. The data in the output buffer is obtained either from
the transcoder or from the cache. In Fig. 2, we illustrated the
possible (exclusive) events that happen when a user request
for a video.

Video transcoding, i.e., compressing a higher bitrate video
to a lower bitrate version, can be done by various tech-
niques [28]. Among those, compressed domain based ap-
proaches, such as bitrate reduction and spatial resolution
reduction, are the most favorable [25]. In general, video
transcoding is a computation-intensive task. The cost of a
transcoding task can be regarded as the CPU usage on the
MEC cache server.

B. Settings

In this paper, we consider a MEC network of K cache
servers, denoted as K = {1, 2, ...K}. Each cache server is
attached to a BS in the cellular RAN that spans K cells. Ad-
ditionally, k = 0 denotes the origin content server. The MEC
servers are connected to each other via backhaul mesh net-
work. The collection of videos is indexed as T = {1, 2, ...V }.
Without loss of generality, we consider that all videos have the
same length and each has L bitrate variants. Hence, the size
of each video variant l, denoted as rl [bytes], is proportional
to its bitrate. The set of all video variants that a user can
request is V = {vl |v ∈ T , l = 1, ...L}. In the subsequent
analysis, unless otherwise stated, we will refer to video and
video variant interchangeably. We consider that video vl can
be transcoded from video vh if l ≤ h and the cost (CPU
usage) of transcoding vh to vl is denoted as φhl, ∀v ∈ T and
l, h = 1, ...L. As considered in [26], we assume that phl is
proportional to rl, i.e., phl = pl = τrl. It should be noted that
this cost model can be easily extended to the case where phl
depends on both rh and rl.

In this paper, we consider that video requests arriving at
each BS following a Poisson process with rate λj , j ∈ K. The
caching design is evaluated in a long time period to accumulate
a large number of request arrivals. The set of new request
arriving at BS j in the considered time period is denoted as
Nj ⊆ V .

We consider that each user only connects to and receives
data from the nearest BS (in terms of signal strength), which
is later referred to as the user’s home BS. Further extension to
the system employing Coordinated Multi-Point transmission
(CoMP), where each user can be served by multiple BSs,
is a subject for future investigation. In the considered MEC
caching system, each cache server is provisioned with a stor-



age capacity of Mj [bytes]. To describe the cache placement,
we define the variables cvlj ∈ {0, 1} , j ∈ K, vl ∈ V , in which
cvlj = 1 if vl is cached at server j and cvlj = 0 otherwise. The
cache storage capacity constraint at each server j ∈ K can be
expressed as, ∑

vl∈V
rlc

vl
j ≤Mj ,∀j ∈ K. (1)

To describe the possible events that happen when a request
for video vl ∈ Nj arriving at server j, we introduce the
binary variables

{
xvlj , y

vl
j , z

vl
jk, t

vl
jk, w

vl
jk

}
∈ {0, 1}, which are

explained as follows.
• xvlj = 1 indicates that vl can be served directly from

cache of BS j, given that cvlj = 1 (as illustrated in
Fig. 2(a)); and xvlj = 0 otherwise.

• yvlj = 1 when vl is retrieved from cache at BS j
after being transcoded from a higher bitrate variant (as
illustrated in Fig. 2(b)); and yvlj = 0 otherwise.

• zvljk = 1 if vl is retrieved from cache of BS k 6= j, k ∈
K ∪ {0} (including the remote server, as illustrated in
Fig. 2(c)); zvljk = 0 otherwise.

• tvljk = 1 when vl is obtained by transrating a higher
bitrate version from cache of BS k 6= j, k ∈ K and
the transcoding is performed at BS k (as illustrated in
Fig. 2(d)); tvljk = 0 otherwise.

• wvljk = 1 when vl is obtained by transrating a higher
bitrate version from cache of BS k 6= j, k ∈ K and
the transcoding is performed at BS j (as illustrated in
Fig. 2(e)); wvljk = 0 otherwise.

When a video is requested, it will be served following one
of the event described above. To ensure this, we impose the
following constraint (∀j ∈ K, vl ∈ V),

xvlj + yvlj +
∑

k 6=j,k∈K

(
zvljk + tvljk + wvljk

)
+ zvlj0 = 1. (2)

C. Backhaul Network Cost
Let djk denote the backhaul cost incurred when the jth

cache server retrieves a video of unit size from the kth cache
server, and let dj0 denote the backhaul cost incurred when the
jth cache server retrieves a video of unit size from the origin
content server in the Internet. If we associate a cost between
any two directly connected BSs, then for any two BSs j and
k, we can calculate djk using the minimum cost path between
j and k. In practice, dj0 is usually much greater than djk as
the backhaul link connecting a BS to the origin content server
is of many-fold further than the backhaul links between the
BSs. This makes it cost-effective to retrieve content from the
in-network caches whenever possible rather than downloading
them from the remote server. To reflect this cost model, as
considered in [17]–[19], we set dj0 � djk,∀j, k ∈ K.

The incurred backhaul cost when serving request for video
vl from BS j can be calculated as (∀j ∈ K, vl ∈ V),

Dj (vl) = rl

dj0zvlj0 + ∑
k 6=j,k∈K

djk
(
zvljk + tvljk + wvljk

) .
(3)

The backhaul cost reflects the amount of data traffic going
through the backhaul links, and thus the resource consumption
of the network. On the other hand, reducing the backhaul
cost (by retrieving content from shorter paths) also directly
translates to the decrease in initial delay that the users have
to wait before starting to play the videos. Therefore, it is
very important to minimize the backhaul cost of serving video
requests, which constitutes a large portion in the total backhaul
cost of a cellular network.

III. JOINT COLLABORATIVE VIDEO CACHING AND
PROCESSING

Here we formulate the collaborative joint caching and
processing problem and present the offline optimal solution,
followed by the proposed online approach.

A. Problem Formulation

To realize the envisioned joint collaborative caching and
processing in a MEC network, we now formulate the opti-
mization problem that aims at minimizing the total backhaul
cost of serving all the video requests. In particular, given the
available resources (cache storage and processing capability),
the objective is to jointly determine (i) a cache placement
policy, i.e., deciding

{
cvlj
}

and (ii) a video request scheduling

policy, i.e., deciding
{
xvlj , y

vl
j , z

vl
jk, t

vl
jk, w

vl
jk

}
. The problem

formulation is as follows,

min
∑
j∈K

∑
vl∈Nj

Dj (vl), (4a)

s.t. xvlj ≤ cvlj , ∀j ∈ K, vl ∈ V, (4b)

zvljk ≤ cvlk , ∀j, k ∈ K, vl ∈ V, (4c)

yvlj ≤ min

(
1,

L∑
m=l+1

cvmj

)
, ∀j ∈ K, vl ∈ V, (4d)

tvljk ≤ min

(
1,

L∑
m=l+1

cvmk

)
, ∀j ∈ K, vl ∈ V, (4e)

wvljk ≤ min

(
1,

L∑
m=l+1

cvmk

)
, ∀j, k ∈ K, vl ∈ V, (4f)

xvlj + yvlj +
∑

k 6=j,k∈K

(
zvljk + tvljk + wvljk

)
+ zvlj0 = 1,

∀j ∈ K, (4g)∑
vl∈V

rlc
vl
j ≤Mj ,∀j ∈ K, (4h)

∑
vl∈Nj

pl

yvlj +
∑

k 6=j,k∈K

wvljk

+
∑

k 6=j,k∈K

∑
vl∈Nk

plt
vl
kj ≤ Pj ,

∀j ∈ K, (4i)

cvlj , x
vl
j , y

vl
j , z

vl
jk, t

vl
jk, w

vl
jk ∈ {0, 1} , ∀j ∈ K, vl ∈ V.

(4j)

The constraints in the formulation above can be explained
as follows: constraints (4b) and (4c) ensure availability of the
exact video variants; constraints (4d), (4e) and (4f) ensure



the availability of the higher bitrate variants for transcoding;
constraint (4g) ensures that each request should only be
fulfilled by one unique path as mentioned in (2); constraint
(4h) ensures the cache storage capacity; finally constraint (5h)
ensures the availability of processing resource (in terms of
encoded bits that can be processed per second) for transcoding
at each cache server.

The problem in (4) is an ILP and is NP-complete, which can
be shown by reduction from a multiple knapsack problem [29].
Thus, solving this problem to optimal in polynomial time is
extremely challenging. A common approach to make such
problem more tractable is to rely on continuous relaxation
of the binary variables to obtain fractional solutions (where
a video request is served from multiple places and a video
can be partially stored in the cache). While the fractional
solutions satisfy the constraints, simply rounding them to
integer solutions will lead to infeasible solutions. Another
approach is to resolve the optimization problem everytime
there is a new request arrival; however this will result in re-
directing large numbers of pre-scheduled requests and wasting
buffer data. Another key challenge of solving problem (4)
in practice is that the complete set of request arrivals, i.e.,
Nj’s, are not known in advance. Furthermore, we make no
assumption about the popularity of the contents, and thus Nj’s
are not known probabilisticly, either.

Motivated by the aforementioned drawbacks, we adopt the
popularly used Least Recently Used (LRU) cache placement
policy [30], and propose a new online Joint Collaborative
Caching and Processing (JCCP) algorithm that makes cache
placement and video request scheduling decisions upon each
new arrival of video request. In the following, before present-
ing our proposed online JCCP algorithm, we briefly discuss
its offline counterpart to serve as a performance benchmark.

B. Offline Approach

The LRU cache placement policy fetches the video from
the neighboring caches or the origin content server upon user
request if it is not already cached at the home BS. It then saves
the content in the cache and if there is not enough space, the
entries that have been least recently used are evicted to free
up space for the newly added content. The LRU-based offline
approach to problem (4) will recompute the optimal request
scheduling everytime there is a new arrival or departure. The
offline request scheduling problem is expressed as in (5), where
N ∗j is the set of videos currently being served at BS j ∈ K.

Note that the solution of the offline problem is optimal in
the long run. However such solution might cause re-directing
the existing video requests whenever the optimal request
scheduling solution is re-calculated, thus wasting the buffered
data at the BSs. Another drawback of the offline solution is
that the complexity of solving the problem scales with the
number of request arrivals and number of caching servers and
thus it is highly impractical to re-solve this problem, which is
an integer program, when there is a large number of request

arrivals in a very short time.

min
∑
j∈K

∑
vl∈N∗

j

Dj (vl), (5a)

s.t. xvlj ≤ cvlj , ∀j ∈ K, vl ∈ V, (5b)

zvljk ≤ cvlk , ∀j, k ∈ K, vl ∈ V, (5c)

yvlj ≤ min

(
1,

L∑
m=l+1

cvmj

)
, ∀j ∈ K, vl ∈ V, (5d)

tvljk ≤ min

(
1,

L∑
m=l+1

cvmk

)
, ∀j ∈ K, vl ∈ V, (5e)

wvljk ≤ min

(
1,

L∑
m=l+1

cvmk

)
, ∀j, k ∈ K, vl ∈ V, (5f)

xvlj + yvlj +
∑

k 6=j,k∈K

(
zvljk + tvljk + wvljk

)
+ zvlj0 = 1, (5g)

∑
vl∈N∗

j

pl

yvlj +
∑

k 6=j,k∈K

wvljk

+
∑

k 6=j,k∈K

∑
vl∈N∗

k

plt
vl
kj ≤ Pj ,

∀j ∈ K, (5h)

xvlj , y
vl
j , z

vl
jk, t

vl
jk, w

vl
jk ∈ {0, 1} . (5i)

C. Proposed Online JCCP Algorithm

In the following, we present the proposed online algorithm
for the joint collaborative caching and processing problem,
which bases on the LRU cache replacement policy. The pro-
posed online JCCP algorithm makes video request scheduling
decision immediately and irrevocably upon each video request
arrival at one of the BSs.

Denote N ∗ = (N ∗1 , ...N ∗K) as the set of videos currently
being served in the system, where N ∗j is served at BS j, we
can calculate the current processing load (due to transcoding)
at BS j as,

Uj(N ∗) =
∑

vl∈N∗
j

pl

yvl
j +

∑
k 6=j,k∈K

wvl
jk

+
∑

k 6=j,k∈K

∑
vl∈N∗

k

plt
vl
kj .

(6)

We define the closest (in terms of bitrate) transcodable
version of video vl at BS j as T (j, vl) = vh, in which,

h = argmin
m>l

cvmj s.t. cvmj = 1. (7)

For each video request vl arriving at BS j ∈ K, we present
the cache placement and request scheduling decisions made
by the online JCCP algorithm as in Algorithm 1. In particular,
the algorithm starts with empty cache at each BS and new
video fetched to each cache will be updated following the
LRU policy. For each new request for vl at BS j, if vl cannot
be directly retrieved (step 2) or transcoded (step 3) from cache
of BS j, the algorithm will search for vl or its transcodable
version from other neighboring caches. Step 6 finds the exactly
requested video vl from the neighboring caches, and if that
exists, vl will be retrieved from the cache with lowest backhaul
cost. Otherwise, a transcodable version of vl will be searched



from neighboring caches in step 7. If the transcodable version
exists in the cache of BS k, the algorithm will select the cache
server (either server k or the requesting server j) with most
available processing resource to perform transcoding. Finally,
if vl cannot be satisfied by the cache system, it will be fetched
from the origin content server (in step 18), which incurs the
highest backhaul cost.

Algorithm 1 Online JCCP
1: Initialize: cvlj = 0,∀vl ∈ V, j ∈ K
2: For each video request vl arriving at BS j ∈ K, proceed.
3: if cvlj = 1 then stream vl from cache of BS j to the user.
4: else if T (j, vl) 6= ∅ and Uj (N ∗) + pl ≤ Pj then
5: transcode T (j, vl) from cache of BS j to vl and

then stream it to the end user.
6: else if

∑
k 6=j,k∈K

cvlk ≥ 1 then

7: f = argmin
k 6=j,k∈K

djk s.t. cvlk = 1

8: retrieve vl from cache of BS f to BS j and then
stream it to the end user.

9: else if
⋃

k 6=j,k∈K
T (k, vl) 6= ∅ then

10: Calculate Qk (N ∗) = Pk − Uk (N ∗)− pl,∀k ∈ K.
11: f = argmax

k 6=j,k∈K
Qk (N ∗) .

12: if Qf (N ∗) ≥ 0 then
13: transcode T (f, vl) to vl at cache of BS f .
14: retrieve vl from cache of BS f to BS j and

then stream it to the end user.
15: else continue.
16: end if
17: else
18: retrieve vl from the origin content server and then

stream it to the end user.
19: end if
20: Update cvlj , ∀j ∈ K, vl ∈ V following LRU policy.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
joint collaborative caching and processing solution under
various cache sizes, processing capacities and video request
arrival rates. We consider a MEC networks consisting of 3
MEC servers, each deployed on a BS of a cellular RAN. We
assume the video library V that consists of V = 1000 unique
videos, each having 4 bitrate variants. Like in [26], we set
the relative bitrates of the four variants to be 0.82, 0.67, 0.55
and 0.45 of the original video bitrate (2 Mbps). We assume
that all video variants have equal length of 10 minutes. The
popularity of the videos being requested at each BS follows
a Zipf distribution with the skew parameter α = 0.8, i.e,
the probability that an incoming request is for the i-th most
popular video is given as,

qi =
1/iα∑V
j=1 1/j

α
. (8)

In order to obtain a scenario where the same video can
have different popularities at different locations, we randomly
shuffle the distributions at different BSs. For each request,
one of the four variants of the video is selected with equal
probability. Video requests arrive one-by-one at each BS j
following a Poisson distribution with rate λj [reqs/min]. For
each simulation, we randomly generate 10, 000 requests at
each BS. The end-to-end latency of fetching video content
from the local BS, from a neighboring BS, and from the
origin content server are randomly assigned following the
uniform distribution in the ranges [5, 10](ms), [20, 50](ms),
and [100, 200](ms), respectively [31]. The backhaul cost dj0’s
and djk’s are set equal to the corresponding delays. In terms
of resources, we set the cache storage capacity relative to the
total size of the video library, and the processing capacity is
regard as the number of encoded bits that can be processed
per second.

In our performance evaluation, we consider the following
three important metrics: (i) cache hit ratio - the fraction of
requests that can be satisfied either by retrieving from the
cache or by transcoding; (ii) average access delay [ms] -
average latency of the contents travelling from the caches or
the origin server to the requesting user; (iii) external backhaul
traffic load [TB] - the volumn of data traffic going through
the backhaul network due to users downloading videos from
the origin server.

In the simulation results, we refer to our proposed joint
collaborative caching and processing scheme as Online-JCCP.
We compare the performance of Online-JCCP with the Offline-
Optimal solution as described in Section III-B and two base-
lines described below.
• CachePro: A joint caching and processing scheme with-

out collaboration among the cache servers, as proposed
in [26].

• CoCache: A collaborative caching scheme without
transcoding, and the LRU cache placement policy is
employed.

A. Impact of cache size and processing capacities

We compare the performance of the four considered caching
schemes in terms of cache hit ratio, average access delay and
external backhaul traffic load at different relative cache sizes
as in Fig. 3(a, b, c) and at different processing capacities
as in Fig. 4(a, b, c). From the figures, we can see that
increasing cache size and processing capacity always result
in performance improvement in all schemes. Notice that the
Online-JCCP scheme significantly outperforms the two base-
lines at a wide range of cache and processing capacities. At
moderate cache and processing capacities, the performance of
Online-JCCP scheme is slightly lower than that of the optimal
scheme; however when the cache size and processing capacity
are high, the performance of Online-JCCP is the same as that
of the optimal scheme. Notice from Fig. 4 that the performance
improvement diminishes at certain processing capacity, from
which the performance of Online-JCCP and Offline-Optimal
schemes are almost identical.
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Fig. 3. Performance comparison of different caching schemes when increasing relative cache capacity at each server; Pj = 10 Mbps, λj =
8 reqs/minute, ∀j ∈ K.
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Fig. 4. Performance comparison of different caching schemes when increasing relative cache capacity at each server; Mj = 20%[Library Size], λj =
8 reqs/minute,∀j ∈ K.

B. Impact of request arrival rate

In Fig. 5, we illustrate the cache hit ratio performance of
the Online-JCCP scheme at different values of video request
arrival rate and processing capacity. It can be seen that the
cache hit ratio decreases at high request arrival rates and low
processing capacity, and it increases otherwise.

Fig. 6 illustrates the processing resource utilization of
Online-JCCP scheme versus different video request arrival
rates and cache capacities. We observe that the processing
utilization increases with arrival rate and moderate cache
capacity, however it decreases at high cache capacity. This can
be explained as when the cache capacity is high, the MEC
servers can store a large number of video variants and thus
there are fewer requests requiring transcoding.

V. CONCLUSIONS

In this paper, we propose the idea of deploying a collabo-
rative caching in a multi-cell Mobile-Edge Computing (MEC)
networks, whereby the MEC servers attached to the BSs can
assist each other for both caching and transcoding of multi-
bitrate videos. The problem of joint collaborative caching
and processing is formulated as an Integer Linear Program
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Fig. 5. Hit ratio performance of the Online-JCCP algorithm at differ-
ent values of video request arrival rate and processing capacity; Mj =
20%[Library Size],∀j ∈ K.
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(ILP) aiming at minimizing the total cost of retrieving video
contents over backhaul links. Due to the NP-completeness of
the problem and the absence of the request arrival informa-
tion in practice, we proposed an efficient online algorithm,
referred to as JCCP, that makes cache placement and video
request scheduling decisions upon arrival of each new request.
Extensive simulation results have demonstrated the significant
performance improvement of the proposed JCCP scheme in
terms of cache hit ratio, content access delay, and external
backhaul traffic load, over the traditional approaches. Further-
more, while the performance of JCCP is slightly lower than
that of the offline optimal scheme at moderate cache storage
and processing capacities, the performance gap is approaching
zero when the caching and processing resources are high.
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